當前位置:首頁 » 服務存儲 » 鐵電存儲長江存儲
擴展閱讀
webinf下怎麼引入js 2023-08-31 21:54:13
堡壘機怎麼打開web 2023-08-31 21:54:11

鐵電存儲長江存儲

發布時間: 2022-04-29 01:40:39

A. 鐵電存儲器就是快閃記憶體嗎

不是的,原理不同。

B. 鐵電存儲器的原理

FRAM利用鐵電晶體的鐵電效應實現數據存儲,鐵電晶體的結構如圖1所示。鐵電效應是指在鐵電晶體上施加一定的電場時,晶體中心原子在電場的作用下運動,並達到一種穩定狀態;當電場從晶體移走後,中心原子會保持在原來的位置。這是由於晶體的中間層是一個高能階,中心原子在沒有獲得外部能量時不能越過高能階到達另一穩定位置,因此FRAM保持數據不需要電壓,也不需要像DRAM一樣周期性刷新。由於鐵電效應是鐵電晶體所固有的一種偏振極化特性,與電磁作用無關,所以FRAM存儲器的內容不會受到外界條件諸如磁場因素的影響,能夠同普通ROM存儲器一樣使用,具有非易失性的存儲特性。
FRAM的特點是速度快,能夠像RAM一樣操作,讀寫功耗極低,不存在如E2PROM的最大寫入次數的問題。但受鐵電晶體特性制約,FRAM仍有最大訪問(讀)次數的限制。

C. 鐵電存儲器的讀寫操作

FRAM保存數據不是通過電容上的電荷,而是由存儲單元電容中鐵電晶體的中心原子位置進行記錄。直接對中心原子的位置進行檢測是不能實現的,實際的讀操作過程是:在存儲單元電容上施加一已知電場(即對電容充電),如果原來晶體的中心原子的位置與所施加的電場方向使中心原子要達到的位置相同,則中心原子不會移動;若相反,則中心原子將越過晶體中間層的高能階到達另一位置,則在充電波形上就會出現一個尖峰,即產生原子移動的比沒有產生移動的多了一個尖峰,把這個充電波形同參考位(確定且已知)的充電波形進行比較,便可以判斷檢測的存儲單元中的內容是「1」或「0」。
無論是2T2C還是1T1C的FRAM,對存儲單元進行讀操作時,數據位狀態可能改變而參考位則不會改變(這是因為讀操作施加的電場方向與原參考位中原子的位置相同)。由於讀操作可能導致存儲單元狀態的改變,需要電路自動恢復其內容,所以每個讀操作後面還伴隨一個"預充"(precharge)過程來對數據位恢復,而參考位則不用恢復。晶體原子狀態的切換時間小於1ns,讀操作的時間小於70ns,加上"預充"時間60ns,一個完整的讀操作時間約為130ns。
寫操作和讀操作十分類似,只要施加所要方向的電場改變鐵電晶體的狀態就可以了,而無需進行恢復。但是寫操作仍要保留一個"預充"時間,所以總的時間與讀操作相同。FRAM的寫操作與其它非易失性存儲器的寫操作相比,速度要快得多,而且功耗小。

D. 鐵電存儲器有什麼型號,有什麼容量的,有沒有現成的驅動,什麼封裝

鐵電晶元的型號多數以FM24xxxx,FM25xxxx,FM3xxxx為主,容量:串口最小的4K,最大的512K,並口最小的8K,最大的2M。只是單純的存儲,無驅動部分,串口多為SOP-8封裝,並口多為貼片,管腳數不一。有任何問題可發郵件到我的Q郵箱 [email protected]

E. 常見的非易失性存儲器有哪幾種

常見的非易失性存儲器有以下幾種:

一、可編程只讀內存:PROM(Programmable read-only memory)

其內部有行列式的鎔絲,可依用戶(廠商)的需要,利用電流將其燒斷,以寫入所需的數據及程序,鎔絲一經燒斷便無法再恢復,亦即數據無法再更改。

二、電可擦可編程只讀內存:EEPROM(Electrically erasable programmable read only memory)

電子抹除式可復寫只讀存儲器(Electrically Erasable Programmable Read Only Memory,EEPROM)之運作原理類似EPROM,但是抹除的方式是使用高電場來完成,因此不需要透明窗。

三、可擦可編程只讀內存:EPROM(Erasable programmable read only memory)

可利用高電壓將數據編程寫入,但抹除時需將線路曝光於紫外線下一段時間,數據始可被清空,再供重復使用。因此,在封裝外殼上會預留一個石英玻璃所制的透明窗以便進行紫外線曝光。

四、電可改寫只讀內存:EAROM(Electrically alterable read only memory)

內部所用的晶元與寫入原理同EPROM,但是為了節省成本,封裝上不設置透明窗,因此編程寫入之後就不能再抹除改寫。

五、快閃記憶體:Flash memory

是一種電子式可清除程序化只讀存儲器的形式,允許在操作中被多次擦或寫的存儲器。這種科技主要用於一般性數據存儲,以及在電腦與其他數字產品間交換傳輸數據,如儲存卡與U盤。快閃記憶體是一種特殊的、以宏塊抹寫的EEPROM。早期的快閃記憶體進行一次抹除,就會清除掉整顆晶元上的數據。

F. 鐵電存儲器有什麼特點

相對於其它類型的半導體技術而言,鐵電存儲器具有一些獨一無二的特性。傳統的主流半導體存儲器可以分為兩類--易失性和非易失性。易失性的存儲器包括靜態存儲器SRAM(static random access memory)和動態存儲器DRAM (dynamic random access memory)。 SRAM和DRAM在掉電的時候均會失去保存的數據。 RAM 類型的存儲器易於使用、性能好,可是它們同樣會在掉電的情況下會失去所保存的數據。
非易失性存儲器在掉電的情況下並不會丟失所存儲的數據。然而所有的主流的非易失性存儲器均源自於只讀存儲器(ROM)技術。正如你所猜想的一樣,被稱為只讀存儲器的東西肯定不容易進行寫入操作
,而事實上是根本不能寫入。所有由ROM技術研發出的存儲器則都具有寫入信息困難的特點。這些技術包括有EPROM (幾乎已經廢止)、EEPROM和Flash。 這些存儲器不僅寫入速度慢,而且只能有限次的擦寫,寫入時功耗大。
鐵電存儲器能兼容RAM的一切功能,並且和ROM技術一樣,是一種非易失性的存儲器。鐵電存儲器在這兩類存儲類型間搭起了一座跨越溝壑的橋梁--一種非易失性的RAM
鐵電存貯器(FRAM)的第一個最明顯的優點是可以跟隨匯流排速度(busspeed)寫入。
鐵電存貯器(FRAM)的第二大優點是幾乎可以無限次寫入。

G. 鐵電存儲器FRAM的鐵電應用

存儲器(FRAM)可以讓設計者更快、更頻繁地將數據寫入非易失性存儲器,而且價格比EEPROM低。數據採集通常包括採集和存儲兩部分,系統所採集的數據((除臨時或中間結果數據外)需要在掉電後能夠保存,這些功能是數據採集系統或子系統所具有的基本功能。在大多數情況下,一些歷史記錄是很重要的。
典型應用:儀表 (電表、氣表、水表、流量表)、RF/ID、儀器,、和汽車黑匣子、安全氣袋、GPS定位系統、電力電網監控系統。 FRAM通過實時存儲數據幫助系統設計者解決了突然斷電數據丟失的問題。參數存儲用於跟蹤系統在過去時間內的改變,它的目的包括在上電狀態時恢復系統狀態或者確認一個系統錯誤。總的來說,數據採集是系統或子系統的功能,不論何種系統類型,設置參數存儲都是一種底層的系統功能。
典型應用: 影印機,列印機, 工業控制, 機頂盒 (Set-Top-Box), 網路設備(網路數據機)和大型家用電器。 鐵電存貯器(FRAM)可以在數據傳遞儲存在其它存儲器之前快速存儲數據。在此情況下,信息從一個子系統非實時地傳送到另一個子系統去.。由於資料的重要性, 緩沖區內的數據在掉電時不能丟失.,在某些情況下,目標系統是一個較大容量的存儲裝置。FRAM以其擦寫速度快、擦寫次數多使數據在傳送之前得到存儲。
典型應用:工業系統、銀行自動提款機 (ATM), 稅控機, 商業結算系統 (POS), 傳真機,未來將應用於硬碟非易失性高速緩沖存儲器。

H. 鐵電存儲器和eeprom的區別

鐵電存貯器(FRAM)快速擦寫和非易失性等特點,令系統工程師可以把現有設計中的SRAM和EEPROM器件整合到一個鐵電存貯器(FRAM)里,或者簡單地作為SRAM擴展。

在多數情況下,系統使用多種存儲器類型,FRAM提供了只使用一個器件就能提供ROM,RAM和EEPROM功能的能力,節省了功耗,成本,空間,同時增加了整個系統的可靠性。

最常見的例子就是在一個有外部串列EEPROM嵌入式系統中,FRAM能夠代替EEPROM,同時也為處理器提供了額外的SRAM功能。

典型應用:攜帶型設備中的一體化存儲器,使用低端控制器的任何系統。

I. 鐵電存儲器的存儲結構

FRAM的存儲單元主要由電容和場效應管構成,但這個電容不是一般的電容,在它的兩個電極板中間沉澱了一層晶態的鐵電晶體薄膜。前期的FRAM每個存儲單元使用兩個場效應管和兩個電容,稱為「雙管雙容」(2T2C),每個存儲單元包括數據位和各自的參考位,簡化的2T2C存儲單元結構如圖2(a)所示。2001年Ramtron設計開發了更先進的"單管單容"(1T1C)存儲單元。1T1C的FRAM所有數據位使用同一個參考位,而不是對於每一數據位使用各自獨立的參考位。1T1C的FRAM產品成本更低,而且容量更大。簡化的1T1C存儲單元結構(未畫出公共參考位)如圖2(b)所示。

J. 鐵電存儲器的技術特點

首先要說明的是鐵電存儲器和浮動柵存儲器的技術差異。現有快閃記憶體和EEPROM都是採用浮動柵技術,浮動柵存儲單元包含一個電隔離門,浮動柵位於標准控制柵的下面及通道層的上面。浮動柵是由一個導電材料,通常是多晶元硅層形成的 (如圖2所示)。浮動柵存儲單元的信息存儲是通過保存浮動柵內的電荷而完成的。利用改變浮動柵存儲單元的電壓就能達到電荷添加或擦除的動作,從而確定存儲單元是在 」1」或「0」 的狀態。但是浮動柵技術需使用電荷泵來產生高電壓,迫使電流通過柵氧化層而達到擦除的功能,因此需要5-10ms的擦寫延遲。高寫入功率和長期的寫操作會破壞浮動柵存儲單元,從而造成有限的擦寫存儲次數(例如:快閃記憶體約十萬次,而EEPROM則約1百萬次)。
鐵電存儲器是一種特殊工藝的非易失性的存儲器,是採用人工合成的鉛鋯鈦(PZT) 材料形成存儲器結晶體,如圖3所示。當一個電場被施加到鐵晶體管時,中心原子順著電場停在低能量狀態I位置,反之,當電場反轉被施加到同一鐵晶體管時,中心原子順著電場的方向在晶體里移動並停在另一低能量狀態II。大量中心原子在晶體單胞中移動耦合形成鐵電疇,鐵電疇在電場作用下形成極化電荷。鐵電疇在電場下反轉所形成的極化電荷較高,鐵電疇在電場下無反轉所形成的極化電荷較低,這種鐵電材料的二元穩定狀態使得鐵電可以作為存儲器。
特別是當移去電場後,中心原子處於低能量狀態保持不動,存儲器的狀態也得以保存不會消失,因此可利用鐵電疇在電場下反轉形成高極化電荷,或無反轉形成低極化電荷來判別存儲單元是在 」1」或 「0」 狀態。鐵電疇的反轉不需要高電場,僅用一般的工作電壓就可以改變存儲單元是在 」1」或 「0」 的狀態;也不需要電荷泵來產生高電壓數據擦除,因而沒有擦寫延遲的現象。這種特性使鐵電存儲器在掉電後仍能夠繼續保存數據,寫入速度快且具有無限次寫入壽命,不容易寫壞。所以,與快閃記憶體和EEPROM 等較早期的非易失性內存技術比較,鐵電存儲器具有更高的寫入速度和更長的讀寫壽命。