當前位置:首頁 » 服務存儲 » 存儲器擴展方式有哪幾種
擴展閱讀
webinf下怎麼引入js 2023-08-31 21:54:13
堡壘機怎麼打開web 2023-08-31 21:54:11

存儲器擴展方式有哪幾種

發布時間: 2022-04-27 19:36:46

① 微機原理總的存儲器字擴展問題

存儲晶元的擴展包括位擴展、字擴展和字位同時擴展等三種情況。

1、位擴展
位擴展是指存儲晶元的字(單元)數滿足要求而位數不夠,需對每個存儲單元的位數進行擴展。

例: 用 1K × 4 的 2114 晶元構成 lK × 8 的存儲器系統。

分析: 每個晶元的容量為 1K ,滿足存儲器系統的容量要求。但由於每個晶元只能提供 4 位數據,故需用 2 片這樣的晶元,它們分別提供 4 位數據至系統的數據匯流排,以滿足存儲器系統的字長要求。

設計要點 :
(1) 將每個晶元的 10 位(1k=2^10)地址線按引腳名稱一一並聯,按次序逐根接至系統地址匯流排的低 10 位。
(2) 數據線則按晶元編號連接,1 號晶元的 4 位數據線依次接至系統數據匯流排的 D0 -D3 , 2 號晶元的 4 位數據線依次接至系統數據匯流排的 D4 -D7 。
(3) 兩個晶元的 端並在一起後接至系統控制匯流排的存儲器寫信號(如 CPU 為 8086/8088,也可由 和 /M 或 IO / 組合來承擔)
(4) 引腳分別並聯後接至地址解碼器的輸出,而地址解碼器的輸入則由系統地址匯流排的高位來承擔。

當存儲器工作時,系統根據高位地址的解碼同時選中兩個晶元,而地址碼的低位也同時到達每一個晶元,從而選中它們的同一個單元。在讀/寫信號的作用下,兩個晶元的數據同時讀出,送上系統數據匯流排,產生一個位元組的輸出,或者同時將來自數據匯流排上的位元組數據寫入存儲器。

2 、字擴充

字擴展用於存儲晶元的位數滿足要求而字數不夠的情況,是對存儲單元數量的擴展。

例 : 用 2K × 8 的 2716 A存儲器晶元組成 8K × 8 的存儲器系統

分析:
由於每個晶元的字長為 8 位,故滿足存儲器系統的字長要求。但由於每個晶元只能提供 2K 個存儲單元,故需用 4 片這樣的晶元,以滿足存儲器系統的容量要求。
設計要點 : 同位擴充方式相似。
(1) 先將每個晶元的 11(2* 2^10) 位地址線按引腳名稱一一並聯,然後按次序逐根接至系統地址匯流排的低 11 位。
(2) 將每個晶元的 8 位數據線依次接至系統數據匯流排的 D0 -D7 。
(3) 兩個晶元的 端並在一起後接至系統控制匯流排的存儲器讀信號(這樣連接的原因同位擴充方式),
(4) 它們的 引腳分別接至地址解碼器的不同輸出,地址解碼器的輸入則由系統地址匯流排的高位來承擔。
當存儲器工作時,根據高位地址的不同,系統通過解碼器分別選中不同的晶元,低位地址碼則同時到達每一個晶元,選中它們的相應單元。在讀信號的作用下,選中晶元的數據被讀出,送上系統數據匯流排,產生一個位元組的輸出。

3 、同時進行位擴充與字擴充
存儲器晶元的字長和容量均不符合存儲器系統的要求,需要用多片這樣的晶元同時進行位擴充和字擴充,以滿足系統的要求。
例 : 用 1K × 4 的 2114 晶元組成 2K × 8 的存儲器系統

分析: 由於晶元的字長為 4 位,因此首先需用採用位擴充的方法,用兩片晶元組成 1K × 8 的存儲器。再採用字擴充的方法來擴充容量,使用兩組經過上述位擴充的晶元組來完成。
設計要點 : 每個晶元的 10 根地址信號引腳宜接接至系統地址匯流排的低 10 位,每組兩個晶元的 4 位數據線分別接至系統數據匯流排的高 / 低四位。地址碼的 A 10 、 A 11 經解碼後的輸出,分別作為兩組晶元的片選信號,每個晶元的 控制端直接接到 CPU 的讀 / 寫控制端上,以實現對存儲器的讀 / 寫控制。
當存儲器工作時,根據高位地址的不同,系統通過解碼器分別選中不同的晶元組,低位地址碼則同時到達每一個晶元組,選中它們的相應單元。在讀 / 寫信號的作用下,選中晶元組的數據被讀出,送上系統數據匯流排,產生一個位元組的輸出,或者將來自數據匯流排上的位元組數據寫入晶元組。

② 存儲器容量的擴充有幾種方法

刪掉多餘的文件,格式化,或者重新買一個容量大的。

③ 存儲器的類型

根據存儲材料的性能及使用方法的不同,存儲器有幾種不同的分類方法。1、按存儲介質分類:半導體存儲器:用半導體器件組成的存儲器。磁表面存儲器:用磁性材料做成的存儲器。
下面我們就來了解一下存儲器的相關知識。
存儲器大體分為兩大類,一類是掉電後存儲信息就會丟失,另一類是掉電後存儲信息依然保留,前者專業術語稱之為「易失性存儲器」,後者稱之為「非易失性存儲器」。

1 RAM

易失性存儲器的代表就是RAM(隨機存儲器),RAM又分SRAM(靜態隨機存儲器)和DRAM(動態隨機存儲器)。

SRAM
SRAM保存數據是靠晶體管鎖存的,SRAM的工藝復雜,生產成本高,但SRAM速度較快,所以一般被用作Cashe,作為CPU和內存之間通信的橋梁,例如處理器中的一級緩存L1 Cashe, 二級緩存L2 Cashe,由於工藝特點,SRAM的集成度不是很高,所以一般都做不大,所以緩存一般也都比較小。

DRAM
DRAM(動態隨機存儲器)保存數據靠電容充電來維持,DRAM的應用比SRAM更普遍,電腦裡面用的內存條就是DRAM,隨著技術的發展DRAM又發展為SDRAM(同步動態隨機存儲器)DDR SDRAM(雙倍速率同步動態隨機存儲器),SDRAM只在時鍾的上升沿表示一個數據,而DDR SDRAM能在上升沿和下降沿都表示一個數據。
DDR又發展為DDR2,DDR3,DDR4,在此基礎上為了適應移動設備低功耗的要求,又發展出LPDDR(Low Power Double Data Rate SDRAM),對應DDR技術的發展分別又有了LPDDR2, LPDDR3, LPDDR4。

目前手機中運行內存應用最多的就是 LPDDR3和LPDDR4,主流配置為3G或4G容量,如果達到6G或以上,就屬於高端產品。

2 ROM

ROM(Read Only Memory)在以前就指的是只讀存儲器,這種存儲器只能讀取它裡面的數據無法向裡面寫數據。所以這種存儲器就是廠家造好了寫入數據,後面不能再次修改,常見的應用就是電腦里的BIOS。
後來,隨著技術的發展,ROM也可以寫數據,但是名字保留了下來。
ROM中比較常見的是EPROM和EEPROM。

EPROM
EPROM(Easerable Programable ROM)是一種具有可擦除功能,擦除後即可進行再編程的ROM內存,寫入前必須先把裡面的內容用紫外線照射IC上的透明視窗的方式來清除掉。這一類晶元比較容易識別,其封裝中包含有「石英玻璃窗」,一個編程後的EPROM晶元的「玻璃窗」一般使用黑色不幹膠紙蓋住, 以防止遭到紫外線照射。

EPROM (Easerable Programable ROM)

EPROM存儲器就可以多次擦除然後多次寫入了。但是要在特定環境紫外線下擦除,所以這種存儲器也不方便寫入。

EEPROM
EEPROM(Eelectrically Easerable Programable ROM),電可擦除ROM,現在使用的比較多,因為只要有電就可擦除數據,再重新寫入數據,在使用的時候可頻繁地反復編程。

FLASH
FLASH ROM也是一種可以反復寫入和讀取的存儲器,也叫快閃記憶體,FLASH是EEPROM的變種,與EEPROM不同的是,EEPROM能在位元組水平上進行刪除和重寫而不是整個晶元擦寫,而FLASH的大部分晶元需要塊擦除。和EEPROM相比,FLASH的存儲容量更大。
FLASH目前應用非常廣泛,U盤、CF卡、SM卡、SD/MMC卡、記憶棒、XD卡、MS卡、TF卡等等都屬於FLASH,SSD固態硬碟也屬於FLASH。

NOR FLAHS & NAND FLASH
Flash又分為Nor Flash和Nand Flash。
Intel於1988年首先開發出Nor Flash 技術,徹底改變了原先由EPROM和EEPROM一統天下的局面;隨後,1989年,東芝公司發表了Nand Flash 結構,強調降低每比特的成本,有更高的性能,並且像磁碟一樣可以通過介面輕松升級。
Nor Flash與Nand Flash不同,Nor Flash更像內存,有獨立的地址線和數據線,但價格比較貴,容量比較小;而Nand Flash更像硬碟,地址線和數據線是共用的I/O線,類似硬碟的所有信息都通過一條硬碟線傳送一樣,而且Nand Flash與Nor Flash相比,成本要低一些,而容量大得多。

如果快閃記憶體只是用來存儲少量的代碼,這時Nor Flash更適合一些。而Nand Flash則是大量數據存儲的理想解決方案。
因此,Nor Flash型快閃記憶體比較適合頻繁隨機讀寫的場合,通常用於存儲程序代碼並直接在快閃記憶體內運行,Nand Flash型快閃記憶體主要用來存儲資料,我們常用的快閃記憶體產品,如U盤、存儲卡都是用Nand Flash型快閃記憶體。
在Nor Flash上運行代碼不需要任何的軟體支持,在Nand Flash上進行同樣操作時,通常需要驅動程序。

目前手機中的機身內存容量都比較大,主流配置已經有32G~128G存儲空間,用的通常就是Nand Flash,另外手機的外置擴展存儲卡也是Nand Flash。

④ 儲存器有哪幾類

一、RAM(Random Access Memory,隨機存取存儲器) RAM的特點是:電腦開機時,操作系統和應用程序的所有正在運行的數據和程序都會放置其中,並且隨時可以對存放在裡面的數據進行修改和存取。它的工作需要由持續的電力提供,一旦系統斷電,存放在裡面的所有數據和程序都會自動清空掉,並且再也無法恢復。 一、RAM(Random Access Memory,隨機存取存儲器) RAM的特點是:電腦開機時,操作系統和應用程序的所有正在運行的數據和程序都會放置其中,並且隨時可以對存放在裡面的數據進行修改和存取。它的工作需要由持續的電力提供,一旦系統斷電,存放在裡面的所有數據和程序都會自動清空掉,並且再也無法恢復。 根據組成元件的不同,RAM內存又分為以下十八種: 01.DRAM(Dynamic RAM,動態隨機存取存儲器) 這是最普通的RAM,一個電子管與一個電容器組成一個位存儲單元,DRAM將每個內存位作為一個電荷保存在位存儲單元中,用電容的充放電來做儲存動作,但因電容本身有漏電問題,因此必須每幾微秒就要刷新一次,否則數據會丟失。存取時間和放電時間一致,約為2~4ms。因為成本比較便宜,通常都用作計算機內的主存儲器。 02.SRAM(Static RAM,靜態隨機存取存儲器) 靜態,指的是內存裡面的數據可以長駐其中而不需要隨時進行存取。每6顆電子管組成一個位存儲單元,因為沒有電容器,因此無須不斷充電即可正常運作,因此它可以比一般的動態隨機處理內存處理速度更快更穩定,往往用來做高速緩存。 03.VRAM(Video RAM,視頻內存) 它的主要功能是將顯卡的視頻數據輸出到數模轉換器中,有效降低繪圖顯示晶元的工作負擔。它採用雙數據口設計,其中一個數據口是並行式的數據輸出入口,另一個是串列式的數據輸出口。多用於高級顯卡中的高檔內存。 04.FPM DRAM(Fast Page Mode DRAM,快速頁切換模式動態隨機存取存儲器) 改良版的DRAM,大多數為72Pin或30Pin的模塊。傳統的DRAM在存取一個BIT的數據時,必須送出行地址和列地址各一次才能讀寫數據。而FRM DRAM在觸發了行地址後,如果CPU需要的地址在同一行內,則可以連續輸出列地址而不必再輸出行地址了。由於一般的程序和數據在內存中排列的地址是連續的,這種情況下輸出行地址後連續輸出列地址就可以得到所需要的數據。FPM將記憶體內部隔成許多頁數Pages,從512B到數KB不等,在讀取一連續區域內的數據時,就可以通過快速頁切換模式來直接讀取各page內的資料,從而大大提高讀取速度。在96年以前,在486時代和PENTIUM時代的初期, FPM DRAM被大量使用。 05.EDO DRAM(Extended Data Out DRAM,延伸數據輸出動態隨機存取存儲器) 這是繼FPM之後出現的一種存儲器,一般為72Pin、168Pin的模塊。它不需要像FPM DRAM那樣在存取每一BIT 數據時必須輸出行地址和列地址並使其穩定一段時間,然後才能讀寫有效的數據,而下一個BIT的地址必須等待這次讀寫操作完成才能輸出。因此它可以大大縮短等待輸出地址的時間,其存取速度一般比FPM模式快15%左右。它一般應用於中檔以下的Pentium主板標准內存,後期的486系統開始支持EDO DRAM,到96年後期,EDO DRAM開始執行。。 06.BEDO DRAM(Burst Extended Data Out DRAM,爆發式延伸數據輸出動態隨機存取存儲器) 這是改良型的EDO DRAM,是由美光公司提出的,它在晶元上增加了一個地址計數器來追蹤下一個地址。它是突發式的讀取方式,也就是當一個數據地址被送出後,剩下的三個數據每一個都只需要一個周期就能讀取,因此一次可以存取多組數據,速度比EDO DRAM快。但支持BEDO DRAM內存的主板可謂少之又少,只有極少幾款提供支持(如VIA APOLLO VP2),因此很快就被DRAM取代了。 07.MDRAM(Multi-Bank DRAM,多插槽動態隨機存取存儲器) MoSys公司提出的一種內存規格,其內部分成數個類別不同的小儲存庫 (BANK),也即由數個屬立的小單位矩陣所構成,每個儲存庫之間以高於外部的資料速度相互連接,一般應用於高速顯示卡或加速卡中,也有少數主機板用於L2高速緩存中。 08.WRAM(Window RAM,窗口隨機存取存儲器) 韓國Samsung公司開發的內存模式,是VRAM內存的改良版,不同之處是它的控制線路有一、二十組的輸入/輸出控制器,並採用EDO的資料存取模式,因此速度相對較快,另外還提供了區塊搬移功能(BitBlt),可應用於專業繪圖工作上。 09.RDRAM(Rambus DRAM,高頻動態隨機存取存儲器) Rambus公司獨立設計完成的一種內存模式,速度一般可以達到500~530MB/s,是DRAM的10倍以上。但使用該內存後內存控制器需要作相當大的改變,因此它們一般應用於專業的圖形加速適配卡或者電視游戲機的視頻內存中。 10.SDRAM(Synchronous DRAM,同步動態隨機存取存儲器) 這是一種與CPU實現外頻Clock同步的內存模式,一般都採用168Pin的內存模組,工作電壓為3.3V。 所謂clock同步是指內存能夠與CPU同步存取資料,這樣可以取消等待周期,減少數據傳輸的延遲,因此可提升計算機的性能和效率。 11.SGRAM(Synchronous Graphics RAM,同步繪圖隨機存取存儲器) SDRAM的改良版,它以區塊Block,即每32bit為基本存取單位,個別地取回或修改存取的資料,減少內存整體讀寫的次數,另外還針對繪圖需要而增加了繪圖控制器,並提供區塊搬移功能(BitBlt),效率明顯高於SDRAM。 12.SB SRAM(Synchronous Burst SRAM,同步爆發式靜態隨機存取存儲器) 一般的SRAM是非同步的,為了適應CPU越來越快的速度,需要使它的工作時脈變得與系統同步,這就是SB SRAM產生的原因。 13.PB SRAM(Pipeline Burst SRAM,管線爆發式靜態隨機存取存儲器) CPU外頻速度的迅猛提升對與其相搭配的內存提出了更高的要求,管線爆發式SRAM取代同步爆發式SRAM成為必然的選擇,因為它可以有效地延長存取時脈,從而有效提高訪問速度。 14.DDR SDRAM(Double Data Rate二倍速率同步動態隨機存取存儲器) 作為SDRAM的換代產品,它具有兩大特點:其一,速度比SDRAM有一倍的提高;其二,採用了DLL(Delay Locked Loop:延時鎖定迴路)提供一個數據濾波信號。這是目前內存市場上的主流模式。 15.SLDRAM (Synchronize Link,同步鏈環動態隨機存取存儲器) 這是一種擴展型SDRAM結構內存,在增加了更先進同步電路的同時,還改進了邏輯控制電路,不過由於技術顯示,投入實用的難度不小。 16.CDRAM(CACHED DRAM,同步緩存動態隨機存取存儲器) 這是三菱電氣公司首先研製的專利技術,它是在DRAM晶元的外部插針和內部DRAM之間插入一個SRAM作為二級CACHE使用。當前,幾乎所有的CPU都裝有一級CACHE來提高效率,隨著CPU時鍾頻率的成倍提高,CACHE不被選中對系統性能產生的影響將會越來越大,而CACHE DRAM所提供的二級CACHE正好用以補充CPU一級CACHE之不足,因此能極大地提高CPU效率。 17.DDRII (Double Data Rate Synchronous DRAM,第二代同步雙倍速率動態隨機存取存儲器) DDRII 是DDR原有的SLDRAM聯盟於1999年解散後將既有的研發成果與DDR整合之後的未來新標准。DDRII的詳細規格目前尚未確定。 18.DRDRAM (Direct Rambus DRAM) 是下一代的主流內存標准之一,由Rambus 公司所設計發展出來,是將所有的接腳都連結到一個共同的Bus,這樣不但可以減少控制器的體積,已可以增加資料傳送的效率。 二、ROM(READ Only Memory,只讀存儲器) ROM是線路最簡單半導體電路,通過掩模工藝,一次性製造,在元件正常工作的情況下,其中的代碼與數據將永久保存,並且不能夠進行修改。一般應用於PC系統的程序碼、主機板上的 BIOS (基本輸入/輸出系統Basic Input/Output System)等。它的讀取速度比RAM慢很多。 三、Cache(高速緩沖存儲器) 加了Cache後,CPU訪問主存的速度大大提高了,但有一點需注意,加Cache只是加快了CPU訪問主存的速度,而CPU訪問主存只是計算機整個操作的一部分,所以增加Cache對系統整體速度只能提高10~20%左右。

⑤ 存儲器擴展時走哪幾種驛馬方式特點是什麼

那快到期走到哪的話,他的方式特點是嗯,他就有那個擴展性,讓人們能夠很快的去接受事物

⑥ 計算機的存儲器有幾類,分別有什麼作用

計算機存儲器指計算機的內部存儲區域,以晶元格式和集成電路形式存在。計算機存儲器應用於錄音機或磁碟。術語「存儲器」通常視為物理存儲器的簡稱,作為保留數據的實際可能晶元。有些計算機也使用虛擬存儲器,即在硬碟上擴展物理存儲器。

存儲器分為兩種基本類型:ROM 和 RAM 。

ROM(只讀存儲器):在 ROM 中,只讀數據是預先記錄的,不能被移動。ROM 不易於丟失,也就是,不管計算機處於開機還是關機狀態,ROM 始終保留其內部內容。大多數個人計算機的 ROM 較小,主要用於存儲一些關鍵性程序,諸如用來啟動計算機的程序。另外,ROM 也用於計算器及外圍設備等,如激光列印機,其字體存儲於 ROM 中。ROM 還存在一些擴展變數,如可編程只讀存儲器(PROM),即採用專用 PROM 編程器在空白晶元上寫入數據。

RAM(隨機存儲器):該存儲器中的內容可以以任意順序存取(讀、寫和移動)。時序存儲器設備正好與其形成對比,如磁帶、唱片等,其存儲介質的機械運動驅使計算機必須以固定順序存取數據。RAM 通常負責計算機中主要的存儲任務,如數據和程序等動態信息的存儲。RAM 的通用格式包括: SRAM(靜態 RAM)和 DRAM(動態 RAM)。

RAM IC 通常組裝為插槽。常見的標准插槽類型包括:SIMM (Single in-line memory mole)插槽和 DIMM (Dual in-line memory mole)插槽。

此外,還存在一些諸如快閃記憶體(Flash memory)、NVRAM 以及 EEPROM 等存儲器類型,它們是結合 RAM 和 ROM 特徵所獲得的產物。

⑦ 由存儲器晶元擴展成存儲器由哪幾種解碼方式各由什麼特點

容量擴展主要有兩種方式,並位和串位,舉個例子,有個2KB的存儲器,我再擴展個2KB的存儲器,如果是並位擴展方式,地址范圍還是2k的空間,不過每次讀出的是16bit;如果是串位方式,則直接擴展成4KB,有4k的地址范圍,每次讀出8bit,不知道你明白了沒有?這個跟片選信號連接方式,以及地址、數據線連接方式有關. 一般來說是以Byte為讀取單位,通常都是串列擴展,即地址線性擴展,2KB的空間,再增加2KB,一共就4KB的存儲器,也是最常用的方式,地址線的高位通過解碼電路構成片選信號,低位為每片的地址信號.

⑧ 目前主要三種數據存儲方式

三種存儲方式:DAS、SAN、NAS
三種存儲類型:塊存儲、文件存儲、對象存儲

塊存儲和文件存儲是我們比較熟悉的兩種主流的存儲類型,而對象存儲(Object-based Storage)是一種新的網路存儲架構,基於對象存儲技術的設備就是對象存儲設備(Object-based Storage Device)簡稱OSD。

本質是一樣的,底層都是塊存儲,只是在對外介面上表現不一致,分別應用於不同的業務場景。

分布式存儲的應用場景相對於其存儲介面,現在流行分為三種:

對象存儲: 也就是通常意義的鍵值存儲,其介面就是簡單的GET、PUT、DEL和其他擴展,如七牛、又拍、Swift、S3

塊存儲: 這種介面通常以QEMU Driver或者Kernel Mole的方式存在,這種介面需要實現Linux的Block Device的介面或者QEMU提供的Block Driver介面,如Sheepdog,AWS的EBS,青雲的雲硬碟和阿里雲的盤古系統,還有Ceph的RBD(RBD是Ceph面向塊存儲的介面)

文件存儲: 通常意義是支持POSIX介面,它跟傳統的文件系統如Ext4是一個類型的,但區別在於分布式存儲提供了並行化的能力,如Ceph的CephFS(CephFS是Ceph面向文件存儲的介面),但是有時候又會把GFS,HDFS這種非POSIX介面的類文件存儲介面歸入此類。

⑨ 存儲器容量擴充方法有哪幾種他們各有什麼優缺點

字擴展與位擴展,但是它們兩個合起來才是一種完整的存儲器擴展方法。