Ⅰ 為什麼說數據存儲技術已經比較完美
你好~
因為至少在糾錯方面已經沒什麼需要改進了。
可靠的數據存儲是IT行業的關鍵,也是現代生活的關鍵。雖然我們把這當成理所當然的事情,但是這其中存在什麼樣的謊言呢?數據視頻專家,IT寫手John Watkinson帶你了解數據存儲的相關細節,以及對未來存儲技術發展的猜想。千萬別燒糊大腦噢。
電腦之所以使用二進制,是因為數字簡化為0和1後,由兩股不同電壓呈現出來時,最容易被區分開。
在快閃記憶體中,我們可以用一束絕緣電子保存這些電壓。但是在其他存儲設備中,則需要物理模型。
以磁帶或硬碟為例,我們先看看小環境內磁化的方向,N-S或S-N。在光碟中,差異則以有沒有小坑表現出來。
生物學里,DNA就是一種數據記錄,這種記錄以離散狀態的化學物質為基礎。「比特」的差別會導致變異,而變異則導致進化或是導致某種蛋白質的缺失而致病。數據記錄對生命而言至關重要。
二進制的媒介並不在乎所呈現的數據是什麼。一旦我們可以放心記錄二進制數據,我們就會把音頻,視頻,圖片,文本,CAD文件和電腦程序放到相同的媒介上,然後完整復制。
這些數據類型之間的唯一差別是其中的一些數據需要在一個特定時間內重復生成。
時機,可靠性,持續時長及成本
不同的存儲媒介有不同的特點,沒有哪種介質盡善盡美。硬碟在讀取密集型應用上存儲性能最佳,但是硬碟不能從驅動中移除。盡管硬碟的數據記錄密度一直比光碟的大,但是你花個幾秒鍾就可以置換出光碟。而且,光碟的貼標成本也很低,所以適合大規模發行。
快閃記憶體可提供快速訪問,而且體積很小,不過它的可持續寫入周期存在局限。盡管快閃記憶體替代了以前的軟磁碟,但是軟磁碟技術並沒消失。它還存在於航空公司,火車票,信用卡和酒店門房鑰匙的磁條中。條形碼就是個很好的例子。
在快閃記憶體中,存儲密度是由單個電荷井的精細構造程度來決定。但是光碟技術的發展不僅可以保存越來越多的信息,而且可解析的數據也越來越小。
U盤中的晶元:沒有活動部件,可直接使用
在旋轉內存中,無論是磁碟還是光碟的,都存在兩個問題:我們要盡可能收集多一點軌道,同時要盡可能多地把數據放到軌道中。
這些軌道極其狹窄,需要主動跟蹤伺服系統使磁頭可以持續被記錄下來,而不受耐受力和溫度改變的影響。為了減少磨損,用於收集的磁頭和磁碟之間是不接觸的。
光碟會盯著軌道,雖然是從微觀角度,但卻是由磁力驅動,磁頭掠過磁碟上方幾納米處的氣膜。自相矛盾的是,它是快閃記憶體,沒有會帶來磨損的活動部件。
編碼
磁碟會掃描自己的軌道,然後按順序收集數據。我們不能只是在磁碟軌道上寫入原始數據,因為如果這些數據包含了相同的比特,那麼就無法區分這些比特,讀取器的同一性也會丟失。相反,數據是通過一個名為信道編碼的進程來修改。信道編碼的功能之一就是保障信號中的時鍾內容,而不考慮真正的數據樣式。
在光碟中,追蹤和聚焦是過濾數據後,通過收集光圈查看數據追蹤的對稱性來執行。信道編碼的第二個功能是去除數據追蹤的DC和低頻內容,使過濾更有效。圓形光點很難分辨軌道上距離太近的數據。
大眾媒體
第一款量產的糾錯應用存在於壓縮盤中,1982年上市,這是在Reed和Solomon的論文發表22年之後。CD的光學技術是早期的鐳射影碟,那麼它的不足在哪裡呢?
首先,數字音頻光碟要實時播放。播放器不會把錯誤視為電腦本身的功能,所以必須得將其糾正。再者,如果CD使用的系統比Reed-Solomon編碼更簡單,那麼這個系統將會更大--因此,將影響到攜帶型和汽車播放器市場。第三,Reed-Solomon糾錯系統是復雜的,在LSI晶元上部署比較經濟。
早在十年前,用於製作壓縮光碟的所有技術早已出現,但是直到LSI Logic 公司的晶元性能跨過某個特定門檻,其性能才突然變得經濟實用。
同理,之後也是在LSI技術可以用消費者可接受的價格執行實時MPEG解碼時,我們才看到了DVD的流行。
綜合
所有光碟用來客服這些問題的技術都被稱為分組編碼。比如,如果所有可能的14比特的結合體都被排序,且以波形描繪出來,就可以選擇出最容易記錄的。
分組編碼如何限制記錄的頻率呢?在a) 表示的最高頻率點,轉換間隔了三個信道位。這樣信道位的記錄密度就成了三倍。注意h)是無效編碼。最長的信道位運行於g),而i) 無效編碼。
上圖顯示出,我們排除了改變太緊密的模式,因此記錄的最高頻率被減少了三分之一。
我們還排除了1和0之間存在較大差異的模式,因為那樣帶來的是我們不想要的直流偏移。267保留了我們許可的模式,比起要記錄八個比特的256模式要好,剩下可同時使用的模式少之又少。
EFM
Kees Immink的數據編碼技巧使用14個信道位的模式來記錄八比特--因此,其名稱就是EFM(eight to fourteen molation)。三種合並的比特被放在各組之間,防止邊界出現混亂,所以17信道位被用於每個數據的記錄。這樣是違背直覺的,直到你意識到編碼規則將信道位的記錄密度提升三倍。所以,我們以3 x 8/17勝出,密度比率為1.41。
是信道編碼機制本身增加了41%的播放時間。筆者認為在30年前能做到如此是非常不錯的。
壓縮光碟和MiniDisc使用的EFM技術藉助了波長為780納米的激光。DVD使用的是其變體,EFM+,激光波長減為了650納米。
藍光格式也使用分組編碼,但不是EFM。而是信道模擬,稱為信道調制,也稱1.7PP調制。它的密度比率要稍遜一些,但由於使用了波長為405納米的激光,所以存儲密度有所增加。這種激光其實並不是藍色的。
磁帶記錄器的磁頭有兩極,就好像微型馬蹄鐵,當磁頭掃描軌道時,兩極之間的有限距離會產生孔徑效應。
下圖顯示出頻率響應就像一個梳子狀的過濾器,帶有周期性的暗碼。傳統的磁帶記錄被限制在下面第一個暗碼的波段部分,但是在第一和第二個暗碼之間,則由部分響應技術來掌控,這樣就把數據容量翻了一番。
所有磁性記錄器都存在磁頭間隙導致的回放信號a) 的暗碼問題。在b) 顯示的部分響應中,磁頭感知不到奇數位的數據,於是會回放偶數位的數據。一個比特之後,兩個偶數位數據就會被恢復。
如果數據太小,以至於其中一個數據(奇數位置)其實就在磁頭間隙處,那麼磁頭的兩極卻只能識別兩邊偶數位置的數據,然後輸出。這兩種數據相加就成了第三級信號。磁頭會交替重復生成交叉存取的奇數和偶數數據流。
使用兩股數據流的合適信道編碼,那麼給定數據流的外部層級就可以輪流使用,這樣就更具可預測性,而讀取器也可以掌握這種預見性使數據更為可靠。這就是現如今讓硬碟容量超乎想像之大的PRML編碼。
糾錯
在真實世界中,熱活力或無線電干擾都是影響我們記錄的因素。顯然,用二進制記錄是最難被干擾的。如果有一比特的數據被干擾,那麼會引起整個數據的改變,因為1會變成0或者0會變成1。如此明顯的改變會被糾錯系統檢測出來。在二進制中,如果有一個比特是錯誤的,那麼只需把它設置為相反的那個數就可以了。因此,二進制的糾錯是比較容易的,真正的難點在於找出有錯的那個比特。
使用二進制以及具備有效糾錯/數據整合系統的存儲設備可以再次生成所記錄的相同數據。換言之,數據的質量從本質上是透明的,因為從媒介質量那裡,它就已經實現了去耦。
有了糾錯系統,我們還能在任意類型的介質上做記錄,包括沒有經過優化的介質,如火車票。以條形碼為例,只有當印有條形碼的產品靠近讀取器時,糾錯系統才會執行任務:要確認已經發現條形碼。
市場存在減少數據存儲成本的壓力,這就意味著要把更多數據放入給定空間內。
沒有哪種介質是完美的,所有介質都存在物理缺陷。由於數據越來越小,這些缺陷就顯得越來越大,所以缺陷導致數據出錯的幾率也在增加。
糾錯需要在真實數據中加入檢測數據,所以讓人感覺記錄效率會被降低,因為執行這些檢測也要佔用空間。事實上,少數額外的檢測任務會讓記錄密度翻倍,所以這是存儲容量的凈增加。
一旦了解到這一點,就會明白糾錯是很重要的一項技術。
第一個實用型的糾錯代碼是Richard Hamming 1950年開發的。Reed-Solomon編碼則是1960年發布。糾錯代碼的發展史其實只有十年。
糾錯要向真實信息添加檢測數據,要優先於記錄,從這些信息中進行計算。這些信息和檢測數據一起形成了一種代碼字,這表示它具備了一些可測試的特性,如通過特定的數學表達式來區分。播放器會對這些特性進行測試,如果發現數據有錯,就不能獲取可測試的特性。余數不會是零,而是被稱為綜合症的一種模式。通過分析這種綜合症可以糾錯。
在特定有限域上的Reed-Solomon 多項式代碼
在Reed-Solomon代碼中,有若干對不同的數學表達式,它們被用來計算校驗符。一個錯誤會導致兩種綜合症。解出兩個方程,就可能發現錯誤的位置以及導致綜合症出現的錯誤模式。
錯誤被呈現並被糾正
如果沒有可靠性和存儲密度,那麼我們現在所使用的這一切將不復存在。我們的數碼照相機所拍的照片會被光點破壞,那樣我們會更喜歡使用傳統膠卷。
如果沒有Reed-Solomon糾錯系統,那麼壓縮光碟怎麼會出現呢?
藉助糾錯系統,記錄密度會持續增長,直到極限。每個比特使用一個電子的快閃記憶體;一個磁化分子代表一個比特的磁碟;使用超短波長的光碟。或許它會被冠以別的什麼名稱。在達到極值前,存儲容量會呈平穩態勢。
力臻完美
最先由Claude Shannon依照科學原理總結出的信息理論決定了糾錯系統的理論局限性,就好像熱動力學原理對熱引擎效率的局限一樣。
但,在真實世界裡,沒有機器會達到理論效率極值。Reed-Solomon糾錯代碼就是以信息理論設定的理論極值來操作。所以不會再有更強大的代碼了。
糾錯系統的糾錯能力是顯而易見的。筆者之所以對此表示懷疑,是因為糾錯理論專業且神秘,以至於不懂的人根本不敢涉足,因而只能留給懂這些東西的人來處理。
盡管,糾錯系統編碼的局限性已經出現,但並不意味著不會再有新突破。糾錯和信道編碼都需要對信息進行編碼和解碼,而這就遵循摩爾定律。
因此,編碼系統的成本和規模都會隨著時間的發展而減小,或者其復雜性會增加,使得新應用成為可能。盡管如此,如果未來出現新的二進制數據存儲設備,使用的是我們聞所未聞的介質,糾錯系統將仍然是基於Reed-Solomon編碼。
希望可以幫助到你~
Ⅱ 生寶寶的時候把胎盤存在希瑞幹細胞了,說是未來可以治病。可以存幾十年嗎,會不會失效
中國幹細胞存儲技術相當成熟了,存在-196℃液氮罐里,存個幾十年不成問題。看了希瑞幹細胞的官網,還有年度質量檢測報告。
Ⅲ FC SAN存儲技術分析:如何解決存儲問題
這意味著,一半以上的存儲基礎設施都採用了基於數據塊的 DAS 和 NAS 外存貯器技術。人們經常問,是否可用作為現有存儲投資的補充來部署光纖通道,以構建真正的異構存儲元件集合。
答案是肯定的,我們將在下面討論幾個相關的案例分析。
案例分析 1:由 Ultra320 SCSI、ATA、SATA 等組成的、完全基於 DAS 的基礎設施
在這個案例中,存儲設備是在幾年內分批采購的,現在有數十、甚至數百台計算機 - 數十個、甚至數百個存儲設備「容器」。每個節點的容量可能有很大差別,而且利用率的差別也很大 - 這是個大問題。但是,從許多層次上看,通過一次性采購來升級到 SAN、購買所有新的存儲設備並將現有存儲設備遷移到新卷的方式並不具吸引力。首先,執行數據復制過程需要很多的人力和 IT 資源,成本很高,而且不可避免地會出現員工生產效率喪失的階段。其次,如果現有 DAS 存儲設備過早報廢也會造成很大的資本帳面損失。
解決方案 1:虛擬化
現在市場上有許多軟體虛擬化產品可供選擇,使您可以將現有 DAS 基礎設施連接到 SAN。例如,FalconStor 推出了 IPSTOR 產品,它允許公司把現有 DAS 存儲連接到該設備的後面,從而使得原有的存儲設備可在光纖通道網路上使用。所有數據都在原處保存,不要求執行復制或遷移。而且,原有節點還能夠配備 2Gb 光纖通道主機適配器。採用 SAN 的優勢在於投資保護,可在原有存儲基礎設施上簡便地共享、開展和構建多種功能。利用可隨需求增長的 SAN,您可以引入新的本地光纖通道存儲設備和光纖通道交換機,在計算機間高效地共享可用存儲容量。因此,部署的異構系統可同時支持 DAS 和 SAN 組件。
案例分析 2:有網路設備組成的、主要基於 NAS 的基礎設施
用戶可能會感到驚訝,NAS 設備可將光纖通道等數據塊存儲設備轉變為在乙太網上顯示的「文件視圖」。連接到 NAS 的用戶可以看到文件夾和文件,甚至可能不知道外存貯器使用了光纖通道。問題是,許多應用程序(例如 Microsoft Exchangereg;)在允許直接與光纖通道數據塊存儲設備通信時表現的性能更好;這是因為,他們能夠避免與乙太網和 TCP/IP 文件處理相關的開銷。(這是一種廣義上的概念, NAS 緩沖的大小仍然對順序數據讀寫和隨機數據讀寫的應用產生影響)。如同其他數據塊技術(Ultra320 SCSI 和串列SCSI -SAS),光纖通道的時延也非常低。
解決方案 2:在 外存貯器上增加光線通道數據塊訪問功能
為了適應優化用來利用數據塊存儲設備的應用程序,用戶可以在 NAS 設備上添加光纖通道目標介面。這個過程涉及到在以目標模式運行的 外存貯器中插入經過認可的光纖通道 HBA (主機匯流排適配器)。這樣允許在 SAN 中通告一個或多個 LUN。然後,在每個希望訪問這些 LUN(LUN,邏輯單元號, Logic Unit Number) 的計算機上安裝單獨的光線通道 HBA。最後,使用設備提供的管理 GUI,用戶可向每個 LUN 分配 外存貯器的剩餘容量。因此,部署的異構系統可同時支持文件和數據塊級的數據訪問。
案例分析 3:光纖通道存儲設備「機架」太昂貴、不適於融合近線存儲應用
許多 IT 機構的企業環境中都會積累數以千 G 的數據,幾乎不可能在工作日之間的夜晚八個小時內完全備份到磁帶中。市場上有許多磁帶虛擬化產品,如 EMC 的 CDL (CLARiiON 磁碟庫)和 Neartek 的 Virtual Storage Engine (VSE2),他們可將基於 RAID 的磁碟設備轉變為許可磁帶設備,而且還可能具有很高的寫入性能。各種應用以為它們在與磁帶外設進行數據通訊,但實際上數據被寫入了 RAID 設備中。這些 RAID 設備的速度允許 IT 管理員在指定的夜間時段內輕松地完全備份數據。此後,在第二天的工作過程中,可進行真正的磁帶備份,而且還不會影響到 SAN 的性能。問題是,本機光纖通道磁碟驅動器價格昂貴,不適用於這種「近線性存儲」應用。
解決方案 3:使用 SAS/SATA 磁碟驅動器的光纖通道存儲 JBOD
許多廠商都在推出內部使用 SAS/SATA 硬碟驅動器的光線通道 JBOD 機架。JBOD 無論採用哪種驅動器都能很好地工作。如果應用要求冗餘埠、高 I/O 性能和最高的 平均無故障時間 等級時,用戶可以選擇更加可靠(也更昂貴)的 SAS 驅動器。對於近線性存儲應用,用戶可以選擇使用不太昂貴的大容量 (300GB) SATA 驅動器。SATA 技術適用於大數據塊、低 I/O 工作負載的近線性存儲設備,適合與光纖通道「前端」連接集成。
案例分析 4:大量光纖通道存儲設備採用物理距離很遠的伺服器
盡管光纖通道能夠支持超過 10km 的光纜,但這經常不切實際,或者距離甚至會超出光線通道的適應能力。在這些情況下,企業往往會發現,無法在企業數據中心和工作現場的伺服器間建立連接,使得伺服器無法聯網。
解決方案 4:ISCSI 和 FCIP 橋接產品
現在,供應商提供了一些新產品,允許不能聯網的伺服器以某種方式訪問光線通道 SAN。第一種方式,採用 FCIP 或 iFCP;這些隧道技術允許在 SAN 間建立 廣域網 距離的鏈路。例如,從技術角度講,乙太網被用來通過隧道將光纖通道從一側的 SAN 連接到另一側的 SAN。McData 推出了幾種具備這種能力的新型交換機產品。第二種方法是以網橋的方式使用 iSCSI。光線通道 SAN 上的額外的存儲容量作為在乙太網網路上被聲明為iSCSI的LUN。遠程位置的伺服器能夠通過基於硬體的 iSCSI 適配器或基於軟體的 iSCSI 驅動程序訪問 iSCSI LUN。有免費的 iSCSI 驅動程序可用於 Windowsreg; 和 Linux 操作系統。這些驅動程序利用遠程伺服器上已有的乙太網連接。盡管用戶可以選擇購買 1Gb iSCSI HBA,但他們必須考慮到許多遠程辦公室只有 T1 和部分 T1 WAN 連接,而不可能進行持續的 1Gb 傳輸。現在,McData 和 Maranti Networks 等許多公司都在銷售具備光纖通道到 iSCSI 橋接功能的光線通道交換設備。值得一提的是,有些網路設備現在也可以提供 iSCSI LUN 功能。
作為一項技術,FC在海量存儲方面有著極強的優勢:簡化的管理、更好的空間利用、更短的反應時間和高帶寬。在過去十年中,FC在提高協同性、降低復雜性和減少成本方面等方面有了巨大的改進。這些改進已使FC超越企業級數據中心的應用,進入中小企業領域。上面一系列的例子旨在證明,在現實情況下,光線通道、NAN 和 DAS 的混合部署能夠為用戶帶來很大的利益。
Ⅳ 固態硬碟存儲了數據,放著10年以上不用,數據會丟失嗎
固態硬碟存儲了數據,放著10年以上不用,數據會丟失。
就是說通過向控制柵極加讀取電壓,判斷柵極、源極之間是否處於導通狀態來讀取快閃記憶體單元的狀態,如果被寫入過的,就處於關閉狀態,為0;而被擦除過的,就處於導通狀態,為1。懸置柵極裡面沒有電子,就是1;如果有電子,就是0。這和擦除一樣,塊擦除了是全1,而不是全0。
寫單元是從1變0的過程。空的SSD大部分是1,沒有電子;寫滿後0狀態變多了。全變1後是不是SSD就壞掉了固態中不僅僅存儲了用戶數據,還存儲了FTL的內容,而FTL數據對硬碟是否可用十分關鍵,它也在放置不上電過程中丟失了。那麼沒有FTL是不是SSD就不可用了呢?
實際上大部分SSD固件在發現NAND顆粒全空後會簡單重建一個空的FTL表,就像SSD初次初始化一樣。總結為了防止數據丟失,建議固態硬碟每個月通一次電,這樣主控晶元可以自動刷新Flash中的信息,保持住信息。另外沒有什麼數據存儲介質是絕對的安全的,所以特別重要的數據一定要做好冗餘備份。
Ⅳ 大數據爆發性增長 存儲技術面臨難題
大數據爆發性增長 存儲技術面臨難題
隨著大數據應用的爆發性增長,大數據已經衍生出了自己獨特的架構,而且也直接推動了存儲、網路以及計算技術的發展。畢竟處理大數據這種特殊的需求是一個新的挑戰。硬體的發展最終還是由軟體需求推動的。大數據本身意味著非常多需要使用標准存儲技術來處理的數據。大數據可能由TB級(或者甚至PB級)信息組成,既包括結構化數據(資料庫、日誌、SQL等)以及非結構化數據(社交媒體帖子、感測器、多媒體數據)。此外,大部分這些數據缺乏索引或者其他組織結構,可能由很多不同文件類型組成。從目前技術發展的情況來看,大數據存儲技術的發展正面臨著以下幾個難題:
1、容量問題
這里所說的「大容量」通常可達到PB級的數據規模,因此,海量數據存儲系統也一定要有相應等級的擴展能力。與此同時,存儲系統的擴展一定要簡便,可以通過增加模塊或磁碟櫃來增加容量,甚至不需要停機。
「大數據」應用除了數據規模巨大之外,還意味著擁有龐大的文件數量。因此如何管理文件系統層累積的元數據是一個難題,處理不當的話會影響到系統的擴展能力和性能,而傳統的NAS系統就存在這一瓶頸。所幸的是,基於對象的存儲架構就不存在這個問題,它可以在一個系統中管理十億級別的文件數量,而且還不會像傳統存儲一樣遭遇元數據管理的困擾。基於對象的存儲系統還具有廣域擴展能力,可以在多個不同的地點部署並組成一個跨區域的大型存儲基礎架構。
2、延遲問題
「大數據」應用還存在實時性的問題。有很多「大數據」應用環境需要較高的IOPS性能,比如HPC高性能計算。此外,伺服器虛擬化的普及也導致了對高IOPS的需求,正如它改變了傳統IT環境一樣。為了迎接這些挑戰,各種模式的固態存儲設備應運而生,小到簡單的在伺服器內部做高速緩存,大到全固態介質的可擴展存儲系統等等都在蓬勃發展。
3、並發訪問
一旦企業認識到大數據分析應用的潛在價值,他們就會將更多的數據集納入系統進行比較,同時讓更多的人分享並使用這些數據。為了創造更多的商業價值,企業往往會綜合分析那些來自不同平台下的多種數據對象。包括全局文件系統在內的存儲基礎設施就能夠幫助用戶解決數據訪問的問題,全局文件系統允許多個主機上的多個用戶並發訪問文件數據,而這些數據則可能存儲在多個地點的多種不同類型的存儲設備上。
4、安全問題
某些特殊行業的應用,比如金融數據、醫療信息以及政府情報等都有自己的安全標准和保密性需求。雖然對於IT管理者來說這些並沒有什麼不同,而且都是必須遵從的,但是,大數據分析往往需要多類數據相互參考,而在過去並不會有這種數據混合訪問的情況,因此大數據應用也催生出一些新的、需要考慮的安全性問題。
5、成本問題
成本問題「大」,也可能意味著代價不菲。而對於那些正在使用大數據環境的企業來說,成本控制是關鍵的問題。想控製成本,就意味著我們要讓每一台設備都實現更高的「效率」,同時還要減少那些昂貴的部件。
對成本控制影響最大的因素是那些商業化的硬體設備。因此,很多初次進入這一領域的用戶以及那些應用規模最大的用戶都會定製他們自己的「硬體平台」而不是用現成的商業產品,這一舉措可以用來平衡他們在業務擴展過程中的成本控制戰略。為了適應這一需求,現在越來越多的存儲產品都提供純軟體的形式,可以直接安裝在用戶已有的、通用的或者現成的硬體設備上。此外,很多存儲軟體公司還在銷售以軟體產品為核心的軟硬一體化裝置,或者與硬體廠商結盟,推出合作型產品。
6、數據的積累
許多大數據應用都會涉及到法規遵從問題,這些法規通常要求數據要保存幾年或者幾十年。比如醫療信息通常是為了保證患者的生命安全,而財務信息通常要保存7年。而有些使用大數據存儲的用戶卻希望數據能夠保存更長的時間,因為任何數據都是歷史記錄的一部分,而且數據的分析大都是基於時間段進行的。要實現長期的數據保存,就要求存儲廠商開發出能夠持續進行數據一致性檢測的功能以及其他保證長期高可用的特性。同時還要實現數據直接在原位更新的功能需求。
7、數據的靈活性
大數據存儲系統的基礎設施規模通常都很大,因此必須經過仔細設計,才能保證存儲系統的靈活性,使其能夠隨著應用分析軟體一起擴容及擴展。在大數據存儲環境中,已經沒有必要再做數據遷移了,因為數據會同時保存在多個部署站點。一個大型的數據存儲基礎設施一旦開始投入使用,就很難再調整了,因此它必須能夠適應各種不同的應用類型和數據場景。
存儲介質正在改變,雲計算倍受青睞
存儲之於安防的地位,其已經不僅是一個設備而已,而是已經升華到了一個解決方案平台的地步。作為圖像數據和報警事件記錄的載體,存儲的重要性是不言而喻的。
安防監控應用對存儲的需求是什麼?首先,海量存儲的需求。其次,性能的要求。第三,價格的敏感度。第四,集中管理的要求。第五,網路化要求。安防監控技術發展到今天經歷了三個階段,即:模擬化、數字化、網路化。與之相適應,監控數據存儲也經歷了多個階段,即:VCR模擬數據存儲、DVR數字數據存儲,到現在的集中網路存儲,以及發展到雲存儲階段,正是在一步步迎合這種市場需求。在未來,安防監控隨著高清化,網路化,智能化的不斷發展,將對現有存儲方案帶來不斷挑戰,包括容量、帶寬的擴展問題和管理問題。那麼,基於大數據戰略的海量存儲系統--雲存儲就倍受青睞了。
基於大數據戰略的安防存儲優勢明顯
當前社會對於數據的依賴是前所未有的,數據已變成與硬資產和人同等重要的重要資料。如何存好、保護好、使用好這些海量的大數據,是安防行業面臨的重要問題之一。那麼基於大數據戰略的安防存儲其優勢何在?
目前的存儲市場上,原有的視頻監控方案容量、帶寬難以擴展。客戶往往需要采購更多更高端的設備來擴充容量,提高性能,隨之帶來的是成本的急劇增長以及系統復雜性的激增。同時,傳統的存儲模式很難在完全沒有業務停頓的情況下進行升級,擴容會對業務帶來巨大影響。其次,傳統的視頻監控方案難於管理。由於視頻監控系統一般規模較大,分布特徵明顯,大多獨立管理,這樣就把整個系統分割成了多個管理孤島,相互之間通信困難,難以協調工作,以提高整體性能。除此之外,綠色、安全等也是傳統視頻監控方案所面臨的突出問題。
基於大數據戰略的雲存儲技術與生俱來的高擴展、易管理、高安全等特性為傳統存儲面臨的問題帶來了解決的契機。利用雲存儲,用戶可以方便的進行容量、帶寬擴展,而不必停止業務,或改變系統架構。同時,雲存儲還具有高安全、低成本、綠色節能等特點。基於雲存儲的視頻監控解決方案是客戶應對挑戰很好的選擇。王宇說,進入二十一世紀,雲存儲作為一種新的存儲架構,已逐步走入應用階段,雲存儲不僅輕松突破了SAN的性能瓶頸,而且可以實現性能與容量的線性擴展,這對於擁有大量數據的安防監控用戶來說是一個新選擇。
以英特爾推出的Hadoop分布式文件系統(HDFS)為例,其提供了一個高度容錯性和高吞吐量的海量數據存儲解決方案。目前已經在各種大型在線服務和大型存儲系統中得到廣泛應用,已經成為海量數據存儲的事實標准。
隨著信息系統的快速發展,海量的信息需要可靠存儲的同時,還能被大量的使用者快速地訪問。傳統的存儲方案已經從構架上越來越難以適應近幾年來的信息系統業務的飛速發展,成為了業務發展的瓶頸和障礙。HDFS通過一個高效的分布式演算法,將數據的訪問和存儲分布在大量伺服器之中,在可靠地多備份存儲的同時還能將訪問分布在集群中的各個伺服器之上,是傳統存儲構架的一個顛覆性的發展。最重要的是,其可以滿足以下特性:可自我修復的分布式文件存儲系統,高可擴展性,無需停機動態擴容,高可靠性,數據自動檢測和復制,高吞吐量訪問,消除訪問瓶頸,使用低成本存儲和伺服器構建。
以上是小編為大家分享的關於大數據爆發性增長 存儲技術面臨難題的相關內容,更多信息可以關注環球青藤分享更多干貨
Ⅵ 內存儲器的發展歷程
對於用過386機器的人來說,30pin的內存,我想在很多人的腦海里,一定或多或少的還留有一絲印象,這一次我們特意收集的7根30pin的內存條,並拍成圖片,怎麼樣看了以後,是不是有一種久違的感覺呀!
30pin 反面 30pin 正面
下面是一些常見內存參數的介紹:
bit 比特,內存中最小單位,也叫「位」。它只有兩個狀態分別以0和1表示
byte位元組,8個連續的比特叫做一個位元組。
ns(nanosecond)
納秒,是一秒的10億分之一。內存讀寫速度的單位,其前面數字越小表示速度越快。
72pin正面 72pin反面
72pin的內存,可以說是計算機發展史的一個經典,也正因為它的廉價,以及速度上大幅度的提升,為電腦的普及,提供了堅實的基礎。由於用的人比較多,目前在市場上還可以買得到。
SIMM(Single In-line Memory Moles)
單邊接觸內存模組。是5X86及其較早的PC中常採用的內存介面方式。在486以前,多採用30針的SIMM介面,而在Pentuim中更多的是72針的SIMM介面,或者與DIMM介面類型並存。人們通常把72線的SIMM類型內存模組直接稱為72線內存。
ECC(Error Checking and Correcting)
錯誤檢查和糾正。與奇偶校驗類似,它不但能檢測到錯誤的地方,還可以糾正絕大多數錯誤。它也是在原來的數據位上外加位來實現的,這些額外的位是用來重建錯誤數據的。只有經過內存的糾錯後,計算機操作指令才可以繼續執行。當然在糾錯是系統的性能有著明顯的降低。
EDO DRAM(Extended Data Output RAM)
擴展數據輸出內存。是Micron公司的專利技術。有72線和168線之分、5V電壓、帶寬32bit、基本速度40ns以上。傳統的DRAM和FPM DRAM在存取每一bit數據時必須輸出行地址和列地址並使其穩定一段時間後,然後才能讀寫有效的數據,而下一個bit的地址必須等待這次讀寫操作完成才能輸出。EDO DRAM不必等待資料的讀寫操作是否完成,只要規定的有效時間一到就可以准備輸出下一個地址,由此縮短了存取時間,效率比FPM DRAM高20%—30%。具有較高的性/價比,因為它的存取速度比FPM DRAM快15%,而價格才高出5%。因此,成為中、低檔Pentium級別主板的標准內存。
DIMM(Dual In-line Memory Moles)
雙邊接觸內存模組。也就是說這種類型介面內存的插板兩邊都有數據介面觸片,這種介面模式的內存廣泛應用於現在的計算機中,通常為84針,由於是雙邊的,所以共有84×2=168線接觸,所以人們常把這種內存稱為168線內存。
PC133
SDRAM(Synchronous Burst RAM)
同步突發內存。是168線、3.3V電壓、帶寬64bit、速度可達6ns。是雙存儲體結構,也就是有兩個儲存陣列,一個被CPU讀取數據的時候,另一個已經做好被讀取數據的准備,兩者相互自動切換,使得存取效率成倍提高。並且將RAM與CPU以相同時鍾頻率控制,使RAM與CPU外頻同步,取消等待時間,所以其傳輸速率比EDO DRAM快了13%。SDRAM採用了多體(Bank)存儲器結構和突發模式,能傳輸一整數據而不是一段數據。
SDRAM ECC 伺服器專用內存
RDRAM(Rambus DRAM)
是美國RAMBUS公司在RAMBUSCHANNEL技術基礎上研製的一種存儲器。用於數據存儲的字長為16位,傳輸率極速指標有望達到600MHz。以管道存儲結構支持交叉存取同時執行四條指令,單從封裝形式上看,與DRAM沒有什麼不同,但在發熱量方面與100MHz的SDRAM大致相當。因為它的圖形加速性能是EDO DRAM的3-10倍,所以目前主要應用於高檔顯卡上做顯示內存。
Direct RDRAM
是RDRAM的擴展,它使用了同樣的RSL,但介面寬度達到16位,頻率達到800MHz,效率更高。單個傳輸率可達到1.6GB/s,兩個的傳輸率可達到3.2GB/s。
點評:
30pin和72pin的內存,早已退出市場,現在市場上主流的內存,是SDRAM,而SDRAM的價格越降越底,對於商家和廠家而言,利潤空間已縮到了極限,賠錢的買賣,有誰願意去做了?再者也沒有必要,畢竟廠家或商家們總是在朝著向「錢」的方向發展。
隨著 INTEL和 AMD兩大公司 CPU生產飛速發展,以及各大板卡廠家的支持,RAMBUS 和 DDRAM 也得到了更快的發展和普及,究竟哪一款會成為主流,哪一款更適合用戶,市場終究會證明這一切的。
機存取存儲器是電腦的記憶部件,也被認為是反映集成電路工藝水平的部件。各種存儲器中以動態存儲器(DRAM)的存儲容量為最大,使用最為普及,幾十年間它的存儲量擴大了幾千倍,存取數據的速度提高40多倍。存儲器的集成度的提高是靠不斷縮小器件尺寸達到的。尺寸的縮小,對集成電路的設計和製造技術提出了極為苛刻的要求,可以說是只有一代新工藝的突破,才有一代集成電路。
動態讀寫存儲器DRAM(Dynamic Random Access MeMory)是利用MOS存儲單元分布電容上的電荷來存儲數據位,由於電容電荷會泄漏,為了保持信息不丟失,DRAM需要不斷周期性地對其刷新。由於這種結構的存儲單元所需要的MOS管較少,因此DRAM的集成度高、功耗也小,同時每位的價格最低。DRAM一般都用於大容量系統中。DRAM的發展方向有兩個,一是高集成度、大容量、低成本,二是高速度、專用化。
從1970年Intel公司推出第一塊1K DRAM晶元後,其存儲容量基本上是按每三年翻兩番的速度發展。1995年12月韓國三星公司率先宣布利用0.16μm工藝研製成功集成度達10億以上的1000M位的高速(3lns)同步DRAM。這個領域的競爭非常激烈,為了解決巨額投資和共擔市場風險問題,世界范圍內的各大半導體廠商紛紛聯合,已形成若干合作開發的集團格局。
1996年市場上主推的是4M位和16M位DRAM晶元,1997年以16M位為主,1998年64M位大量上市。64M DRAM的市場佔有率達52%;16M DRAM的市場佔有率為45%。1999年64M DRAM市場佔有率已提高到78%,16M DRAM佔1%。128M DRAM已經普及,明年將出現256M DRAM。
高性能RISC微處理器的時鍾已達到100MHz~700MHz,這種情況下,處理器對存儲器的帶寬要求越來越高。為了適應高速CPU構成高性能系統的需要,DRAM技術在不斷發展。在市場需求的驅動下,出現了一系列新型結構的高速DRAM。例如EDRAM、CDRAM、SDRAM、RDRAM、SLDRAM、DDR DRAM、DRDRAM等。為了提高動態讀寫存儲器訪問速度而採用不同技術實現的DRAM有:
(1) 快速頁面方式FPM DRAM
快速頁面方式FPM(Fast Page Mode)DRAM已經成為一種標准形式。一般DRAM存儲單元的讀寫是先選擇行地址,再選擇列地址,事實上,在大多數情況下,下一個所需要的數據在當前所讀取數據的下一個單元,即其地址是在同一行的下一列,FPM DRAM可以通過保持同一個行地址來選擇不同的列地址實現存儲器的連續訪問。減少了建立行地址的延時時間從而提高連續數據訪問的速度。但是當時鍾頻率高於33MHz時,由於沒有足夠的充電保持時間,將會使讀出的數據不可靠。
(2) 擴展數據輸出動態讀寫存儲器EDO DRAM
在FPM技術的基礎上發展起來的擴展數據輸出動態讀寫存儲器EDODRAM(Extended Data Out DRAM),是在RAM的輸出端加一組鎖存器構成二級內存輸出緩沖單元,用以存儲數據並一直保持到數據被可靠地讀取時為止,這樣就擴展了數據輸出的有效時間。EDODRAM可以在50MHz時鍾下穩定地工作。
由於只要在原DRAM的基礎上集成成本提高並不多的EDO邏輯電路,就可以比較有效地提高動態讀寫存儲器的性能,所以在此之前,EDO DRAM曾成為動態讀寫存儲器設計的主流技術和基本形式。
(3) 突發方式EDO DRAM
在EDO DRAM存儲器的基礎上,又發展了一種可以提供更高有效帶寬的動態讀寫存儲器突發方式EDO DRAM(Burst EDO DRAM)。這種存儲器可以對可能所需的4個數據地址進行預測並自動地預先形成,它把可以穩定工作的頻率提高到66MHz。
(4) 同步動態讀寫存儲器SDRAM
SDRAM(Synchronous DRAM)是通過同步時鍾對控制介面的操作和安排片內隔行突發方式地址發生器來提高存儲器的性能。它僅需要一個首地址就可以對一個存儲塊進行訪問。所有的輸入采樣如輸出有效都在同一個系統時鍾的上升沿。所使用的與CPU同步的時鍾頻率可以高達66MHz~100MHz。它比一般DRAM增加一個可編程方式寄存器。採用SDRAM可大大改善內存條的速度和性能,系統設計者可根據處理器要求,靈活地採用交錯或順序脈沖。
Infineon Technologies(原Siemens半導體)今年已批量供應256Mit SDRAM。其SDRAM用0.2μm技術生產,在100MHz的時鍾頻率下輸出時間為10ns。
(5) 帶有高速緩存的動態讀寫存儲器CDRAM
CDRAM(Cached DRAM)是日本三菱電氣公司開發的專有技術,1992年推出樣品,是通過在DRAM晶元,集成一定數量的高速SRAM作為高速緩沖存儲器Cache和同步控制介面,來提高存儲器的性能。這種晶元用單一+3.3V電源,低壓TTL輸入輸出電平。目前三菱公司可以提供的CDRAM為4Mb和16Mb,其片內Cache為16KB,與128位內部匯流排配合工作,可以實現100MHz的數據訪問。流水線式存取時間為7ns。
(6) 增強型動態讀寫存儲器EDRAM(Enhanced DRAM)
由Ramtron跨國公司推出的帶有高速緩沖存儲器的DRAM產品稱作增強型動態讀寫存儲器EDRAM(Enhanced DRAM),它採用非同步操作方式,單一+5V工作電源,CMOS或TTL輸入輸出電平。由於採用一種改進的DRAM 0.76μm CMOS工藝和可以減小寄生電容和提高晶體管增益的結構技術,其性能大大提高,行訪問時間為35ns,讀/寫訪問時間可以提高到65ns,頁面寫入周期時間為15ns。EDRAM還在片內DRAM存儲矩陣的列解碼器上集成了2K位15ns的靜態RAM高速緩沖存儲器Cache,和後寫寄存器以及另外的控制線,並允許SRAM Cache和DRAM獨立操作。每次可以對一行數據進行高速緩沖。它可以象標準的DRAM對任一個存儲單元用頁面或靜態列訪問模式進行操作,訪問時間只有15ns。當Cache未命中時,EDRAM就把新的一行載入到Cache中,並把選擇的存儲單元數據輸出,這需要花35ns。這種存儲器的突發數據率可以達到267Mbytes/s。
(7) RDRAM(Rambus DRAM)
Rambus DRAM是Rambus公司利用本身研製的一種獨特的介面技術代替頁面方式結構的一種新型動態讀寫存儲器。這種介面在處理機與DRAM之間使用了一種特殊的9位低壓負載發送線,用250MHz同步時鍾工作,位元組寬度地址與數據復用的串列匯流排介面。這種介面又稱作Rambus通道,這種通道嵌入到DRAM中就構成Rambus DRAM,它還可以嵌入到用戶定製的邏輯晶元或微處理機中。它通過使用250MHz時鍾的兩個邊沿可以使突發數據傳輸率達到500MHz。在採用Rambus通道的系統中每個晶元內部都有它自己的控制器,用來處理地址解碼和面頁高速緩存管理。由此一片存儲器子系統的容量可達512K位元組,並含有一個匯流排控制器。不同容量的存儲器有相同的引腳並連接在同一組匯流排上。Rambus公司開發了這種新型結構的DRAM,但是它本身並不生產,而是通過發放許可證的方式轉讓它的技術,已經得到生產許可的半導體公司有NEC、Fujitsu、Toshiba、Hitachi和LG等。
被業界看好的下一代新型DRAM有三種:雙數據傳輸率同步動態讀寫存儲器(DDR SDRAM)、同步鏈動態讀寫存儲器(SLDRAM)和Rambus介面DRAM(RDRAM)。
(1) DDR DRAM(Double Data Rate DRAM)
在同步動態讀寫存儲器SDRAM的基礎上,採用延時鎖定環(Delay-locked Loop)技術提供數據選通信號對數據進行精確定位,在時鍾脈沖的上升沿和下降沿都可傳輸數據(而不是第一代SDRAM僅在時鍾脈沖的下降沿傳輸數據),這樣就在不提高時鍾頻率的情況下,使數據傳輸率提高一倍,故稱作雙數據傳輸率(DDR)DRAM,它實際上是第二代SDRAM。由於DDR DRAM需要新的高速時鍾同步電路和符合JEDEC標準的存儲器模塊,所以主板和晶元組的成本較高,一般只能用於高檔伺服器和工作站上,其價格在中低檔PC機上可能難以接受。
(2) SLDRAM(Synchnonous Link DRAM)
這是由IBM、HP、Apple、NEC、Fujitsu、Hyundai、Micron、TI、Toshiba、Sansung和Siemens等業界大公司聯合制定的一個開放性標准,委託Mosaid Technologies公司設計,所以SLDRAM是一種原本最有希望成為高速DRAM開放性工業標準的動態讀寫存儲器。它是一種在原DDR DRAM基礎上發展的一種高速動態讀寫存儲器。它具有與DRDRAM相同的高數據傳輸率,但是它比其工作頻率要低;另外生產這種存儲器不需要支付專利使用費,使得製造成本較低,所以這種存儲器應該具有市場競爭優勢。但是由於SLDRAM聯盟是一個鬆散的聯合體,眾多成員之間難以協調一致,在研究經費投入上不能達成一致意見,加上Intel公司不支持這種標准,所以這種動態存儲器反而難以形成氣候,敵不過Intel公司鼎立支持的Rambus公司的DRDRAM。SLDRAM可用於通信和消費類電子產品,高檔PC和伺服器。
(3) DRDRAM(Direct Rambus DRAM)
從1996年開始,Rambus公司就在Intel公司的支持下制定新一代RDRAM標准,這就是DRDRAM(Direct RDRAM)。這是一種基於協議的DRAM,與傳統DRAM不同的是其引腳定義會隨命令而變,同一組引腳線可以被定義成地址,也可以被定義成控制線。其引腳數僅為正常DRAM的三分之一。當需要擴展晶元容量時,只需要改變命令,不需要增加硬體引腳。這種晶元可以支持400MHz外頻,再利用上升沿和下降沿兩次傳輸數據,可以使數據傳輸率達到800MHz。同時通過把數據輸出通道從8位擴展成16位,這樣在100MHz時就可以使最大數據輸出率達1.6Gb/s。東芝公司在購買了Rambus公司的高速傳輸介面技術專利後,於1998年9月首先推出72Mb的RDRAM,其中64Mb是數據存儲器,另外8Mb用於糾錯校驗,由此大大提高了數據讀寫可靠性。
Intel公司辦排眾議,堅定地推舉DRDRAM作為下一代高速內存的標准,目前在Intel公司對Micro、Toshiba和Samsung等公司組建DRDRAM的生產線和測試線投入資金。其他眾多廠商也在努力與其抗爭,最近AMD宣布至少今年推出的K7微處理器都不打算採用Rambus DRAM;據說IBM正在考慮放棄對Rambus的支持。當前市場上同樣是64Mb的DRAM,RDRAM就要比其他標準的貴45美元。
由此可見存儲器的發展動向是:大容量化,高速化, 多品種、多功能化,低電壓、低功耗化。
存儲器的工藝發展中有以下趨勢:CHMOS工藝代替NMOS工藝以降低功耗;縮小器件尺寸,外圍電路仍採用ECL結構以提高存取速度同時提高集成度;存儲電容從平面HI-C改為深溝式,保證尺寸減少後的電荷存儲量,以提高可靠性;電路設計中簡化外圍電路結構,注意降低雜訊,運用冗餘技術以提高質量和成品率;工藝中採用了多種新技術;使DRAM的存儲容量穩步上升,為今後繼續開發大容量的新電路奠定基礎。
從電子計算機中的處理器和存儲器可以看出ULSI前進的步伐和幾十年間的巨大變化。
Ⅶ 什麼樣的存儲設備決定怎樣的未來
但是設備模式不會按照人們的主觀想法來改變,它只會按照企業的結構模式來改變。 我想通過這篇文章談談你應該了解的一些設備及其差異,好讓大家未雨綢繆。如果你的IT架構像壁爐管道,沒有對存儲,虛擬化和運算進行分區,那麼就需要在未來幾年迅速對此環境做出改變。另外,你可能正在找新工作,因為一些供應商們正通過外包,IT合同或轉交給雲供應商的方式將你的環境變得更為新潮。 我的觀點是,你需要好好計劃,充分准備。我們先說說你需要熟悉的幾種設備。 Hadoop 設備 這類設備可分為三種: 1.標准Hadoop 2.共享型文件系統Hadoop 3.快速存儲Hadoop 標准Hadoop 如果是一個標准設備,你可以為Hadoop購買預載入和配置好的節點以及優化過的硬體。 你可以從很多供應商那裡購買這類軟硬體。某些情況下,你還可以只是為集群購買軟體,而在其他情況下,則是從軟硬體優化的廠商那裡購買。不論何種方式,這都是具備三方復制,帶有預配置軟硬體的標准Hadoop。共享型文件系統Hadoop 共享型文件系統設備通常具備Lustre或GPFS文件系統,它們可以優化Hadoop的清洗階段(Shuffle Phase)。此法之所以奏效是因為可從全球的節點讀取數據,而不是一定要跨網路讀取或分布。所有的節點都依附於共享型文件系統,可從存儲的地方直接讀取數據,無需從伺服器進入網路,再返回伺服器到存儲。 用這種方法處理某些問題,比標準的Hadoop配置方法快速。此外,還保障了RAID的可靠性和故障轉移。供應商們的可靠性案例顯示,如果是RAID,就不需要三方復制。 快速存儲設備 當然,答案取決於數據的數量和類型,有多少數據輸入以及正在執行幾項查詢。搞清楚這些問題有利於你的選擇。 大型文件系統設備 目前,有兩個不同的大型共享型文件系統被用於大型存儲設備--GPFS和Lustre。很多供應商們都在生產這些設備。Lustre是一項開源項目,而GPFS則由IBM出品。 問題是,從很大程度上說,這兩個文件系統都是按照大型數據塊的需求和用戶的連續I/O設計的。這並不是說不能對軟硬體進行配置,使其支持更小的數據塊。我並不是說小型數據塊的性能比NAS機箱要好,但或許你想搞清楚這些問題,以顯示你的共享文件系統有多神奇。 1.從以下方面了解你的工作負載: 2.向供應商詢問端到端的可靠性。 3. 詢問供應商關於RAID重建的事情。 其他設備現在市場上有很多數據分析產品和資料庫產品,可能其中有些能滿足你企業的需求。這些新設備或許能以某種方式將信息關聯起來,或是使用圖譜分析尋找關系。 這類事情都是一致的:如果你無法在本地更快速更經濟地完成,就得把任務外包到雲中。我們的工作岌岌可危 如果CIO和公司員工不遵循計劃,那總會有人遵循。那個時候,就會有人取代你。 我在日本測試一款新設計的文件系統時,我最好的朋友就告訴我「我們要吃壽司,不然我們就會變成壽司」。意思是你要麼隨著這股潮流改變,要麼等著被拍死在沙灘上。 市場上推陳出新,我們就要與時俱進。管理也應該納入這一進程,這樣才能實現高效。 否則,就等著把工作外包到雲中或是給其他企業把。現在有很多新技術可以解決新問題和舊問題。我們要熟悉這些技術才能生存下去。 我想,很多我們現在看到的存儲技術都將成為專用設備。雖然目前90%的數據訪問都是通過POSIX系統介面,另外10%則通過對象介面,但是在未來十年,這種情況會發生改變。 要做好准備,還記得那時候的我們從專屬大型處理器過渡到DEC,MIPS,英特爾等廠商生產的微處理器嗎?這次將和上世紀90年代微處理器帶來的改變類似。
Ⅷ 機械硬碟壽命有可能超過十年嗎
機械硬碟選擇性小,與固態硬碟不同,產品種類繁多;價格穩定,幅度不超過兩位數,且性能穩定,除容量不斷擴大外,幾乎沒有其他變化。許多朋友在更換機器的過程中放棄了以前的硬碟。據信機械硬碟的性能會在很長一段時間後下降。事實上,機械硬碟並不像大家想像的那麼容易。可以毫不誇張地說,如果使用得當,使用機械硬碟非常容易10年。
希捷通過創新數據的存儲,共享和使用方式,為人類體驗創造了空間。希捷旗下擁有包括:硬碟、HDD機械硬碟、SSD固態硬碟、移動硬碟等領先數據存儲技術產品。超過十年是非常有可能的。
Ⅸ 請教,什麼數據放在固態盤上對資料庫性能提升效果最大
隨著存儲技術的革新, 固態硬碟(SSD)在企業應用中扮演著越來越重要的角色。同傳統的硬碟相比,無論是讀寫還是隨機存取的速度,SSD性能的優勢都非常明顯。但是傳統硬碟是比較成熟的產品 ,它們作為主流存儲介質已經存在數十年,而且背後還有一系...
Ⅹ 1TB的硬碟和現在普遍使用的硬碟存儲技術有什麼不同
是採用 垂直存儲方式存儲的
我們知道當磁碟上的磁體區變得太小時,它們將不能在室溫下保持磁的正確方向,就會產生空比特。之前磁碟中數據位都是水平放置,而在垂直記錄方式下,他們都是垂直站立起來的。
在水平記錄方式下,每個數據位的南北磁極與臨近數據位的南北級相互吸引和排斥。但是,在垂直記錄方式下,南北級垂直向上或向下,就解決了磁極之間的沖突問題,減少了空數據位的數量。新舊兩種方式的另外一個不同點就是數據位下面軟體底層的疊加。這個新的平層提高了硬碟磁頭讀寫的可靠性。
在垂直存儲技術原理圖中,被寫電流包圍的即為磁頭,下方為介質中所包含的以高導磁率SUL形式存在的「磁頭」,它們相互配合來完成數據的垂直存儲。
垂直存儲技術能夠讓數據位站立在磁碟上,而不是向現有的水平記錄技術那樣,平鋪在磁碟上,它能提供新的硬碟數據密度和容量。新的數據排列方法,通過使磁頭在相同的時間內掃描更多的數據位,從而提高硬碟性能。垂直存儲技術由於能耗小,發熱量也隨之減少,從而改善了數據抵抗熱退減的能力,提高了硬碟的可靠性。
垂直磁記錄的數據位為垂直排列(數據位與磁碟垂直),這樣可以獲得更多的磁碟空間來存儲更多的數據,從而可以實現更高的磁錄密度。
垂直記錄磁頭上半部分在高導磁率SUL中存在磁場是的圖像,SUL的垂直磁頭將磁場傳遞給介質,介質包含部分以SUL形式存在的部分「磁頭」,我們可以看到這是效率極高的讀寫過程。
這是垂直記錄磁頭上半部分在高導磁率SUL中存在磁場是的圖像,SUL的垂直磁頭將磁場傳遞給介質,介質包含部分以SUL形式存在的部分「磁頭」,我們可以看到這是效率極高的讀寫過程。
返回極的面積將增加,所以磁場強度就得以降低,避免將數據擦除,不過也可以將數據記錄到沒有SUL的垂直介質,但是這會損失垂直記錄那出色的可寫性。
與縱向記錄不同,垂直介質中的退磁磁場方向與磁化磁場方向相反,在高密度情況下更是如此。而且垂直介質還有點不同,就是退磁磁場支持鄰位磁化,使的高密度存儲更可靠。
由於退磁磁場行為存在上述差異,所以垂直記錄和水平記錄的熱衰減線性密度趨勢彼此相反。低密度垂直模式更容易出現熱衰減和外漏磁場擦除現象,因此垂直記錄技術真是天性適合應用的高密度的存儲領域。
躍遷是水平介質外部磁場的來源,而對於垂直介質來說,除躍遷以外的所有地方都有磁通量,垂直波形看起來更像磁化模式,而不是磁化發生的變化,這直接可以放映在讀寫的質量上。
晶格介質記錄
磁頭的寫入單位是由磁粒組成的磁單元,在同一磁軌上極性相反的相鄰磁單元之間的邊界稱為磁變換,通過比特單元是否包括磁變換來進行數據記錄。既要准確探測到磁變換,又要避免超順磁效應的影響,減小寫入單位的尺寸是實現提高存儲密度的方式之一,這就是晶格介質技術。
其基本原理就是,生成小尺寸、有序排列的「單疇磁島」作為寫入單位,通過這種技術的存儲密度可以達到傳統垂直記錄的大約兩倍。而且由於每個島都是一個單磁疇,所以晶格介質的熱穩定性也很好,幾乎不會受到超順磁效應的影響。
現在的光刻技術已經能夠實現製造磁島,這其中需要用到電子束刻蝕技術和納米刻印復制技術,前者用於製造後者的模板,後者則將圖樣翻版到硬碟碟片的基板之上。在磁變換的過程當中,當被寫入數據以後,磁島必須保持單疇,這樣數據才不會丟失,因此,除了製造工藝要取得突破以外,還需要磁頭技術的配合。晶格介質記錄這項技術目前還需要進行大量的實用化研究。
熱輔助磁記錄
我們知道過高矯頑力磁介質的使用,可以進一步減小磁粒尺寸。之所以過去的技術推廣程度不高,是因為使用這種介質時,顧名思義磁頭寫入需要極強的磁場,不僅使得磁頭製造困難,而且也會對相鄰區域的數據穩定性有一定影響。
現在,一種全新的記錄方式可以有效解決這個問題——熱輔助磁記錄。其原理就是採用激光作為輔助,在寫入介質時,使用激光照射寫入點,這樣磁頭就可以利用熱能,從而在磁場強度小的情況下也能順利進行寫入操作。難點就在於需要採用極細的激光束,普通激光不能滿足需求,實驗室當中流行的辦法是採用近場光。
這項技術理論上可以將存儲密度提高到5Tbit/平方英寸,即傳統垂直記錄技術的存儲密度極限的10倍,目前還處在基礎研究階段。
為了提高存儲密度,多年來工程師一直在縮小數據位和微粒的尺寸,這協助PC廠商將硬碟存儲容量由數MB提高到了100 GB。但是,多年來的縮微化已經使得磁粒的尺寸僅有8 納米長。
進一步減少磁粒的尺寸會造成它們在室溫下翻轉,數據會因此受到損壞--亦即所謂的「超順磁效應」(Superparamagnetic Effect)。減少每個數據位中的微粒數量,就會提高硬碟的噪音和降低可靠性。硬碟廠商已經利用垂直存儲技術爭取了一些時間,但這一技術並沒有解決「無法再縮小」的難題。
熱輔助寫入陣營希望改變微粒。 Mark Kryder表示,與鈷- 鉑微粒不同的是,鐵- 鉑微粒在室溫下不會翻轉。為了寫入或刪除數據,被整合在硬碟中的激光將會加熱一個具體數據位,當數據被存儲或刪除後,數據位將迅速冷卻。他指出,增加激光會大幅度提高成本。
但是,材料的改變並非易事。例如,半導體製造由鋁轉向銅時給晶元廠商帶來了很大麻煩。對於熱輔助寫入技術而言,工程師必須找到精確定位激光的完美方式。
當前的垂直紀錄技術在HAMR技術應用之前,可以達到0.5-1Tb每平方英寸的儲存密度。希捷研究預測使用HAMR技術,或者結合bit patterned media技術,可以獲得50terabit每平方英寸的儲存密度,但50Tb每平方英寸的儲存密度已經是HAMR技術的極限,而且如此高的密度可能在2020年才能實現。
與熱輔助陣營形成鮮明對比的是,晶格媒介技術陣營希望保留現有的微粒不變。這種技術將把每個數據位的微粒數量由100 個減少到1 個,然後使這些數據位彼此隔離,減少相互間的干擾和降低數據損壞的危險。
磁性顆粒排列方式從無序到有序,實現存儲密度跨越式發展
眾所周知,由鋁經過陽極氧化而成的氧化鋁存在大量納米級的納米孔。通過在這些納米孔中填充磁性金屬,就有望實現晶格介質。
不過,氧化鋁中的納米孔有一個特點,它會以自生方式形成蜂窩狀的六方形緻密結構,因此不適合沿圓周方向進行磁記錄的硬碟。因而該研究小組於2005年6月開發了先在鋁表面以直線狀形成凹凸圖案,再對氧化鋁納米孔進行一維排列的手法(發布資料)。但當時的一維排列間隔最小隻有45nm。此次通過對陽極氧化條件進行優化,在凹部內形成雙列納米孔,從而縮小了間隔。即使是間隔接近電子束繪制極限的50nm間隔的凹凸線也能在寬25nm的凹部兩側形成納米孔列,從而實現了25nm間隔。
除此之外,還在填充了磁性體的納米孔磁性層(納米孔為隨機排列)下方,形成了用於將磁束向記錄層集中的軟磁性底膜,並成功地利用垂直磁記錄頭進行了記錄和讀取。今後准備製作以25nm間隔沿圓周方向排列納米孔,並且含有軟磁性底膜的記錄介質,力爭實現1Tbit/平米英寸級的記錄與讀取。
無論如何硬碟不斷接受著閃村的考驗,這也將是一場磁與電的競爭。不過相信近十年或更長時間,硬碟廠商將綜合採用熱輔助寫入、規則媒介技術,生產存儲密度達到每平方英寸50-100 TB的硬碟,這將確保硬碟仍然是最經濟有效的存儲方式。