當前位置:首頁 » 服務存儲 » 分頁式存儲管理調度
擴展閱讀
webinf下怎麼引入js 2023-08-31 21:54:13
堡壘機怎麼打開web 2023-08-31 21:54:11

分頁式存儲管理調度

發布時間: 2022-03-12 05:36:13

『壹』 分頁式存儲管理的主要區別是 ( ).

分頁式存儲管理系統和分段式存儲管理系統的主要區別:
分頁和分段有許多相似之處,比如兩者都不要求作業連續存放.但在概念上兩者完全不同,主要表現在以下幾個方面:
(1)頁是信息的物理單位,分頁是為了實現非連續分配,以便解決內存碎片問題,或者說分頁是由於系統管理的需要.段是信息的邏輯單位,它含有一組意義相對完整的信息,分段的目的是為了更好地實現共享,滿足用戶的需要.
(2)頁的大小固定,由系統確定,將邏輯地址劃分為頁號和頁內地址是由機器硬體實現的.而段的長度卻不固定,決定於用戶所編寫的程序,通常由編譯程序在對源程序進行編譯時根據信息的性質來劃分.
(3)分頁的作業地址空間是一維的.分段的地址空間是二維的.

『貳』 分頁式存儲管理

進程有3頁, 那就是3* 64/16=12 K,
0塊 1塊 2塊 3塊 4塊 5塊 6塊 7塊
0 4K-1 4K 8K-1 8K --12k_1 12K 16K-1 16K -- 20K-1 20K 24K 28K----32K-1
邏輯地址=塊號 + 塊內地址,5276 ,應該是在第5塊的276位元組處, 20*1024+276 應該是物理地址

『叄』 求用c++程序設計的實驗:模擬分頁式存儲管理中硬體的地址轉換和用先進先出調度演算法(FIFO)處理缺頁中斷。

#include<iostream.h>
#include<stdlib.h>
#include<iomanip.h>
#include"windows.h"
#include"os.h"
#define n 64//實驗中假定主存的長度
#define m 4//實驗中假定每個作業分得主存塊塊數
int p[m];//定義頁
struct
{
short int lnumber;//頁號
short int flag;//表示該頁是否在主存,「1」表示在主存,「0」表示不在主存
short int pnumber;//該頁所在主存塊的塊號
short int write;//該頁是否被修改過,「1」表示修改過,「0」表示沒有修改過
short int dnumber;//該頁存放在磁碟上的位置,即磁碟塊號
short int times;//被訪問的次數,用於LRU演算法
}page[n];//定義頁表
//各個函數的實現如下:
computer::computer()
{
int i;
for(i=0;i<n;i++)
{
page[i].lnumber = i;
page[i].flag = 0;
page[i].pnumber = 10000;//用10000表示為空
page[i].write = 0;
page[i].dnumber = i;
page[i].times = 0;
}//初始化頁表

for(i=0;i<m;i++)
{
page[i].pnumber = i;
}

for(i=0;i<m;i++)
{
p[i] = i;
page[i].flag = 1;
}//初始化頁
}
void computer::showpagelist()
{
int i;
cout<<"頁號"<<"\t"<<"是否在主存中"<<"\t"<<"塊 號"<<"\t"<<"是否被修改過"<<"\t"<<"磁碟塊號"<<"\t"<<"訪問次數"<<endl;
for(i=0;i<n;i++)
{
cout<<page[i].lnumber<<"\t"<<page[i].flag<<" "<<page[i].pnumber<<"\t"<<page[i].write<<" "<<page[i].dnumber<<" \t"<<page[i].times<<endl;
}
}
void computer::showpage()
{
int i;
for(i=0;i<m;i++)
{
cout<<"\t"<<p[i];
}
cout<<endl;
}
void computer::transformation()
{
unsigned logicAddress,logicNumber,innerAddress,physicsAddress,physicsNumber;
int i,head=0,fail = 0;
int method,temppage=0;
short int times = 10000;
cout<<"請輸入一個邏輯地址(四位十六進制數):";
cin>>hex>>logicAddress;//讀入邏輯地址
logicNumber = logicAddress >> 10;//得到頁號
cout<<"頁號為:"<<logicNumber<<endl;
innerAddress = logicAddress & 0x03ff;//得到頁內地址
cout<<"頁內地址為:"<<innerAddress<<endl;
for(i=0;i<n;i++)
{
if(logicNumber==(unsigned)page[i].lnumber)
{
if(page[i].flag == 1)
{
cout<<"請求的頁面在主存中!"<<endl;
page[i].times++;
physicsNumber = page[i].pnumber;//由頁號得到塊號
cout<<"請求的主存塊號為:"<<physicsNumber<<endl;
physicsAddress = physicsNumber << 10 |innerAddress;//得到物理地址
cout<<"請求的物理地址為:"<<physicsAddress<<endl;//輸出物理地址
break;
}
else
{

cout<<"請求的頁面不在主存中! 將進行缺頁中斷處理!"<<endl<<"請選擇演算法!"<<endl;
cout<<"1.先進先出"<<endl<<"2.最近最少用"<<endl<<"請選擇置換演算法:";
cin>>method;
if(method == 1) //採用先進先出演算法
{
cout<<"採用先進先出演算法!"<<endl;
fail = p[head];
cout<<"第"<<fail<<"頁將被替換!"<<endl;
p[head] = logicNumber;
head = (head+1) % m;
if(page[fail].write == 1)
cout<<"第"<<fail<<"頁曾被修改過!"<<endl;
page[fail].flag = 0;
page[logicNumber].flag = 1;
page[logicNumber].write = 0;
page[logicNumber].pnumber = page[fail].pnumber;
page[fail].pnumber = 10000;
page[logicNumber].times++;
break;
}
else if(method == 2) //採用最近最少用演算法
{
cout<<"採用最近最少用演算法!"<<endl;
for(i=0;i<n;i++)
{
if(page[i].flag == 1)
{
if(page[i].times<times)
{
times = page[i].times;
temppage = page[i].lnumber;
}
}
}
cout<<"第"<<temppage<<"頁將被替換!"<<endl;
for(i=0;i<m;i++)
{
if(p[i] == temppage)
{
p[i] = logicNumber;
}
}
if(page[temppage].write == 1)
cout<<"第"<<temppage<<"頁曾被修改過!"<<endl;
page[temppage].flag = 0;
page[logicNumber].flag = 1;
page[logicNumber].write = 0;
page[logicNumber].pnumber = page[temppage].pnumber;
page[temppage].pnumber = 10000;
page[logicNumber].times++;
break;
}
else
{ cout<<"你輸入有誤,即將退出!";
exit(1);
}
}
}
}
}
void main()
{
char c,d;
computer os;
cout<<"頁表正在初始化中...,3秒鍾後為你顯示頁和頁表!"<<endl;
Sleep(3000);
os.showpage();
os.showpagelist();
T:
os.transformation();
cout<<"是否顯示頁和頁表?(Y/N)";
cin>>c;
switch(c)
{
case 'y':
os.showpage();
os.showpagelist();
case 'n':
cout<<"是否繼續進行請求分頁?(Y/N)";
cin>>d;
if (d=='Y'||d=='y')
goto T;
else if (d=='N'||d=='n')
exit(1);
else
cout<<"輸入錯誤!"<<endl;
default:cout<<"輸入錯誤!"<<endl;
}

}

『肆』 請求分頁調度是和分頁調度有何聯系和區別

在分頁存儲管理方式中 :不具備頁面對換功能,不支持虛擬存儲器功能,在調度作業運行時 ,必須將它的所有頁面一次調入內存 ,若內存沒有足夠的塊, 則作業等待的這種分頁管理方式被稱為純分頁或基本分頁存儲管理方式.

而請求分頁管理方式是支持虛擬存儲的,具備了頁面的對換功能.調度作業時 是將它的 一部分(而不是全部) 放入內存.當發現頁面缺少時 會發出一個缺頁請求 從外存調用頁面文件進入內存.

基於以上所述:基於這一點,請求分頁存儲管理可以提供虛存,而分頁存儲管理卻不能提供虛存。

『伍』 基本分頁存儲管理方式的頁面與頁表

1) 頁面和物理塊
分頁存儲管理是將一個進程的邏輯地址空間分成若干個大小相等的片,稱為頁面或頁,並為各頁加以編號,從0開始,如第0頁、第1頁等。相應地,也把內存空間分成與頁面相同大小的若干個存儲塊,稱為(物理)塊或頁框(frame),也同樣為它們加以編號,如0#塊、1#塊等等。在為進程分配內存時,以塊為單位將進程中的若干個頁分別裝入到多個可以不相鄰接的物理塊中。由於進程的最後一頁經常裝不滿一塊而形成了不可利用的碎片,稱之為「頁內碎片」。
2) 頁面大小
在分頁系統中的頁面其大小應適中。頁面若太小,一方面雖然可使內存碎片減小,從而減少了內存碎片的總空間,有利於提高內存利用率,但另一方面也會使每個進程佔用較多的頁面,從而導致進程的頁表過長,佔用大量內存;此外,還會降低頁面換進換出的效率。然而,如果選擇的頁面較大,雖然可以減少頁表的長度,提高頁面換進換出的速度,但卻又會使頁內碎片增大。因此,頁面的大小應選擇適中,且頁面大小應是2的冪,通常為512 B~8 KB。 分頁地址中的地址結構如下:
對於某特定機器,其地址結構是一定的。若給定一個邏輯地址空間中的地址為A,頁面的大小為L,則頁號P和頁內地址d可按右圖所示公式求得:
其中,INT是整除函數,MOD是取余函數。例如,其系統的頁面大小為1 KB,設A = 2170 B,則由上式可以求得P = 2,d = 122。 頁表的功能可以由一組專門的寄存器來實現。一個頁表項用一個寄存器。由於寄存器具有較高的訪問速度,因而有利於提高地址變換的速度;但由於寄存器成本較高,且大多數現代計算機的頁表又可能很大,使頁表項的總數可達幾千甚至幾十萬個,顯然這些頁表項不可能都用寄存器來實現,因此,頁表大多駐留在內存中。在系統中只設置一個頁表寄存器PTR(Page-Table Register),在其中存放頁表在內存的始址和頁表的長度。平時,進程未執行時,頁表的始址和頁表長度存放在本進程的PCB中。當調度程序調度到某進程時,才將這兩個數據裝入頁表寄存器中。因此,在單處理機環境下,雖然系統中可以運行多個進程,但只需一個頁表寄存器。
當進程要訪問某個邏輯地址中的數據時,分頁地址變換機構會自動地將有效地址(相對地址)分為頁號頁內地址兩部分,再以頁號為索引去檢索頁表。查找操作由硬體執行。在執行檢索之前,先將頁號與頁表長度進行比較,如果頁號大於或等於頁表長度,則表示本次所訪問的地址已超越進程的地址空間。於是,這一錯誤將被系統發現並產生一地址越界中斷。若未出現越界錯誤,則將頁表始址與頁號和頁表項長度的乘積相加,便得到該表項在頁表中的位置,於是可從中得到該頁的物理塊號,將之裝入物理地址寄存器中。與此同時,再將有效地址寄存器中的頁內地址送入物理地址寄存器的塊內地址欄位中。這樣便完成了從邏輯地址到物理地址的變換。右圖示出了分頁系統的地址變換機構。 由於頁表是存放在內存中的,這使CPU在每存取一個數據時,都要兩次訪問內存。第一次是訪問內存中的頁表,從中找到指定頁的物理塊號,再將塊號與頁內偏移量W拼接,以形成物理地址。第二次訪問內存時,才是從第一次所得地址中獲得所需數據(或向此地址中寫入數據)。因此,採用這種方式將使計算機的處理速度降低近1/2。可見,以此高昂代價來換取存儲器空間利用率的提高,是得不償失的。
為了提高地址變換速度,可在地址變換機構中增設一個具有並行查尋能力的特殊高速緩沖寄存器,又稱為「聯想寄存器」(Associative Memory),或稱為「快表」,在IBM系統中又取名為TLB(Translation Lookaside Buffer),用以存放當前訪問的那些頁表項。此時的地址變換過程是:在CPU給出有效地址後,由地址變換機構自動地將頁號P送入高速緩沖寄存器,並將此頁號與高速緩存中的所有頁號進行比較,若其中有與此相匹配的頁號,便表示所要訪問的頁表項在快表中。於是,可直接從快表中讀出該頁所對應的物理塊號,並送到物理地址寄存器中。如在塊表中未找到對應的頁表項,則還須再訪問內存中的頁表,找到後,把從頁表項中讀出的物理塊號送地址寄存器;同時,再將此頁表項存入快表的一個寄存器單元中,亦即,重新修改快表。但如果聯想寄存器已滿,則OS必須找到一個老的且已被認為不再需要的頁表項,將它換出。右圖示出了具有快表的地址變換機構。

『陸』 分頁式存儲管理決定頁面大小的主要因素有哪些

主要因素是用戶主存空間
主存空間大則用大頁面
否則會帶來頁表佔用空間過大的問題
——————好好上課啊kora

『柒』 分頁式存儲管理與分段式管理的主要區別是什麼

頁和分段系統有許多相似之處,但在概念上兩者完全不同,主要表現在:

1、頁是信息的物理單位,分頁是為實現離散分配方式,以消減內存的外零頭,提高內存的利用率;或者說,分頁僅僅是由於系統管理的需要,而不是用戶的需要。

段是信息的邏輯單位,它含有一組其意義相對完整的信息。分段的目的是為了能更好的滿足用戶的需要。

2、頁的大小固定且由系統確定,把邏輯地址劃分為頁號和頁內地址兩部分,是由機器硬體實現的,因而一個系統只能有一種大小的頁面。

段的長度卻不固定,決定於用戶所編寫的程序,通常由編輯程序在對源程序進行編輯時,根據信息的性質來劃分。

3、分頁的作業地址空間是維一的,即單一的線性空間,程序員只須利用一個記憶符,即可表示一地址。

分段的作業地址空間是二維的,程序員在標識一個地址時,既需給出段名,又需給出段內地址。

『捌』 模擬分頁式存儲管理 怎麼做

http://www.happycampus.com.cn/pages/2004/11/10/D153924.html

http://desktop.nju.e.cn/czxt/Courseware/Upload_Book/N18/200407121823/OSPPT/OSMemory/OS4page.ppt

看下以上網址