存儲區域網路(Storage Area Network,簡稱SAN)採用網狀通道(Fibre Channel ,簡稱FC,區別與Fiber Channel光纖通道)技術,通過FC交換機連接存儲陣列和伺服器主機,建立專用於數據存儲的區域網路。SAN經過十多年歷史的發展,已經相當成熟,成為業界的事實標准(但各個廠商的光纖交換技術不完全相同,其伺服器和SAN存儲有兼容性的要求)。SAN專注於企業級存儲的特有問題。當前企業存儲方案所遇到問題的兩個根源是:數據與應用系統緊密結合所產生的結構性限制,以及小型計算機系統介面(SCSI)標準的限制。大多數分析都認為SAN是未來企業級的存儲方案,這是因為SAN便於集成,能改善數據可用性及網路性能,而且還可以減輕管理作業。
❷ 光纖交換機配置
在傳統的沒有SAN網路存在的系統中,網路中的各台主機是相互獨立的,主機只能訪問自己的硬碟,數據不會在存儲級喪失安全性。為了是SAN網路的可用性,在部署SAN架構的時候,一般都採用了冗餘的架構,為了使這些可用的設備互不影響,,使主機訪問存儲設備路徑的唯一性,需要對SAN架構中的存儲設備,光纖交換機,主機劃分不同的ZONE。具體劃分ZONE的方法詳見下實例。一號工程在實施之初大多數都採用如下的方案,這種方案存在一定的隱患,即光纖交換機沒有冗餘,這種方案如果不進行ZONE的設置,可能會導致系統不能使用存儲陣列的情況。我們建議個煙廠的系統管理員對一號工程的SAN網路進行檢查,並對系統進行設置。
一.環境:
DB2:HBA1/HBA2
WAS:HBA1/HBA2
FAST600:控制器A/控制器B
SAN Switch: ibm h08或ibm h16
二.配置原則:
以一塊HBA卡對應一個控制器的原則進行zone配置
連接示意圖
三.具體配置操作步驟和方法:
1. 用網線連接到交換機的管理口
# telnet 用戶名:admin
密 碼:password
❸ 如何使光纖通道存儲可用於 Oracle Solaris
Oracle Solaris 10 和 Oracle Solaris 11 自帶了一個光纖通道發起方系統,您可以對它進行配置以便將 Sun ZFS
存儲設備提供的光纖通道 (FC) LUN 集成到 Oracle Solaris 環境中。本文介紹如何配置 Oracle Solaris 光纖通道系統以及如何配置
Sun ZFS 存儲設備來配置供 Oracle Solaris 伺服器訪問的 FC LUN。可以使用瀏覽器用戶界面 (BUI) 完成這些配置。
本文做出以下假設:
已知 Sun ZFS 存儲設備的 root 帳戶口令。
已知 Sun ZFS 存儲設備的 IP 地址或主機名。
已配置好 Sun ZFS 存儲設備使用的網路。
Sun ZFS 存儲設備已配置有具有足夠可用空閑空間的存儲資源池。
已知 Oracle Solaris 伺服器的 root 帳戶口令。
Sun ZFS 存儲設備已經連接到光纖通道交換機。
已在 FC 交換機上配置了相應的區域,允許 Oracle Solaris 主機訪問 Sun ZFS 存儲設備。
配置 Oracle Solaris FC 系統
為了讓 Sun ZFS 存儲設備和 Oracle Solaris 伺服器彼此標識,每個設備的 FC 全球編號 (WWN)
必須在另一個設備中注冊。您必須確定在 FC 交換機上實現的某些形式 FC 區域的 WWN。
主機的 FC WWN 用於向 Sun ZFS 存儲設備標識主機,並且需要它來完成本文中的配置過程。
WWN 來自在 Oracle Solaris 主機和 Sun ZFS 存儲設備中安裝的 FC 主機匯流排適配器 (HBA)。
為了配置 Oracle Solaris FC 系統,您需要知道 Sun ZFS 存儲設備的 WWN。在傳統的雙結構存儲區域網路 (SAN) 中,Sun
ZFS 存儲設備至少有一個 FC 埠連接到每個結構。因此,您必須至少確定兩個 FC WWN。
標識 Sun ZFS 存儲設備 FC WWN
首先,您需要建立一個到 Sun ZFS 存儲設備的管理會話。
在 Web 瀏覽器的地址欄中輸入一個包含 Sun ZFS 存儲設備的 IP 地址或主機名的地址,如以下 URL 所示:
https://<ip-address or host name>:215
將顯示登錄對話框。
輸入用戶名和口令,然後單擊 LOGIN。
成功登錄到 BUI 之後,您可以通過 Configuration 選項卡標識 WWN。
單擊 Configuration > SAN > Fibre Channel
Ports。
將顯示安裝在 Sun ZFS 存儲設備中的 FC 埠。由於每個 HBA 通道只有一個已發現的埠,因此這必須是 HBA 通道本身。
在前面的示例中,埠 1 具有 WWN 21:00:00:e0:8b:92:a1:cf,埠 2 具有 WWN
21:01:00:e0:8b:b2:a1:cf。
在每個 FC 埠框右側的列表框中,應該將 FC 通道埠設置為 Target。如果情況並非如此,則 FC
埠可能用於其他用途。在調查原因之前,請不要更改設置。(一種可能的原因是可能用於了 NDMP 備份。)
標識 Oracle Solaris 主機 HBA WWN
如果 Oracle Solaris 主機已經通過相應的電纜連接到 FC 交換機,則使用以下命令來標識 WWN。
要獲得主機的 WWN,輸入以下命令:
root@solaris:~# cfgadm -al -o show_FCP_dev
root@solaris:~#
在該輸出中,您需要的控制器號為 c8 和 c9。當埠類型為
fc-fabric 時,您還可以看到兩個埠都連接到一台 FC 交換機。接下來,查詢這些控制器來確定發現的 WWN。
如果 HBA 埠未用於訪問任何其他連接 FC 的設備,則可使用以下命令來確定 WWN。
root@solaris:~# prtconf -vp | grep port-wwn
port-wwn: 210000e0.8b89bf8e
port-wwn: 210100e0.8ba9bf8e
root@solaris:~#
如果正在訪問 FC 設備,則以下命令將顯示 FC HBA WWN。
root@solaris:~# luxadm -e mp_map /dev/cfg/c8
root@solaris:~#
顯示為類型 0x1f 的最後一個條目 (Unknown type, Host Bus Adapter)
在埠 WWN 條目下提供了相應的 WWN。重復此命令,使用在第 1 步中標識的其他控制器替換
/dev/cfg/c8。
從輸出中,您可以看到 c8 具有 WWN
21:00:00:00:e0:8b:89:bf:8e,c9 具有 WWN
21:01:00:e0:8b:a9:bf:8e。
然後,可以使用 Sun ZFS 存儲設備 HBA 和 Oracle Solaris 主機 HBA WWN 來配置任何 FC 交換機區域。
完成此操作之後,您可以運行以下命令來驗證正確的區域:
root@solaris:~# cfgadm -al -o show_FCP_dev c8 c9
root@solaris:~#
現在,您可以看到可由 Oracle Solaris 主機訪問的 Sun ZFS 存儲設備提供的 WWN。
使用瀏覽器用戶界面配置 Sun ZFS 存儲設備
作為一個統一的存儲平台,Sun ZFS 存儲設備既支持通過 iSCSI 協議訪問數據塊協議
LUN,又支持通過光纖通道協議進行同樣的訪問。這一節講述如何使用 Sun ZFS 存儲設備 BUI 來配置 Sun ZFS 存儲設備,使其能夠識別 Oracle
Solaris 主機並向該主機提供 FC LUN。
定義 FC 目標組
在 Sun ZFS 存儲設備上創建目標組,以便定義 Oracle Solaris 伺服器可通過哪個埠和協議訪問提供給它的 LUN。對於此示例,創建 FC
目標組。
執行以下步驟在 Sun ZFS 存儲設備上定義 FC 目標組:
單擊 Configuration > SAN 顯示 Storage Area Network (SAN)
屏幕
單擊右側的 Targets 選項卡,然後選擇左側面板頂部的 Fibre Channel
Ports
將滑鼠放置在 Fibre Channel Ports 框中,將在最左側出現一個 Move 圖標()
單擊 Move 圖標並將此框拖到 Fibre Channel Target
Groups 框,如圖 4 所示。
拖動橙色框中的條目來創建新的目標組。將創建組,並將其自動命名為 targets-n,其中
n 是一個整數。
將游標移到新目標組條目上。在 Fibre Channel Target Groups 框右側會出現兩個圖標
要重命名新的目標組 targets-0,單擊 Edit 圖標()顯示對話框
在 Name 域中,將默認名稱替換為新 FC 目標組的首選名稱,單擊
OK。本例中用名稱 FC-PortGroup 替換
targets-0。在此窗口中,您還可以通過單擊所選 WWN 左側的框來添加第二個 FC 目標埠。第二個埠標識為 PCIe 1:Port 2。
單擊 OK 保存更改。
單擊 APPLY。 Fibre Channel Target Groups
面板中顯示了如上的更改。
定義 FC 發起方
定義 FC 發起方以便允許從一台或多台伺服器訪問特定卷。應該配置對卷的訪問許可權,以便允許最少數量的 FC
發起方訪問特定卷。如果多個主機可以同時寫入一個指定卷並且使用非共享文件系統,則各主機上的文件系統緩存可能出現不一致,最終可能導致磁碟上的映像損壞。一般對於一個卷,只會賦予一個發起方對該卷的訪問許可權,除非使用的是一種特殊的集群文件系統。
FC 發起方用於從 Sun ZFS 存儲設備的角度出發來定義「主機」。在傳統的雙結構 SAN 中,主機將至少由兩個 FC 發起方來定義。FC
發起方定義包含主機 WWN。為了向 Sun ZFS 存儲設備標識 Oracle Solaris 伺服器,必須在存儲設備中注冊 Oracle Solaris FC
發起方 WWN,為此要執行以下步驟。
單擊 Configuration > SAN 顯示 Storage Area Network (SAN)
屏幕
單擊右側的 Initiators 選項卡,然後選擇左側面板頂部的 Fibre Channel
Initiators
單擊 Fibre Channel Initiators 左側的 圖標顯示 New Fibre Channel Initiator 對話框
如果已在 FC 交換機上配置了區域,則應顯示 Oracle Solaris 主機的 WWN(假設沒有為它們指定別名)。
在對話框底部單擊一個 WWN(如果顯示)預填充全球名稱,或者在 World Wide Name 框中鍵入相應的
WWN。
在 Alias 框中輸入一個更有意義的符號名稱。
單擊 OK。
對於其他涉及 Oracle Solaris 主機的 WWN,重復前面的步驟。
定義 FC 發起方組
將一些相關 FC 發起方組成邏輯組,這樣可以對多個 FC 發起方執行同一個命令,例如,可以使用一個命令對一個組中的所有 FC 發起方分配 LUN
訪問許可權。對於下面的示例,FC 發起方組將包含兩個發起方。注意,在集群中,多個伺服器被視作一個邏輯實體,因此發起方組可以包含更多發起方。
執行以下步驟創建一個 FC 發起方組:
選擇 Configuration > SAN 顯示 Storage Area Network (SAN)
屏幕。
選擇右側的 Initiators 選項卡,然後單擊左側面板頂部的 Fibre Channel
Initiators。
將游標放置在上一節中創建的一個 FC 發起方條目上。此時,在該條目左側會出現一個 Move 圖標()
單擊 Move 圖標並將其拖到右側的 Fibre Channel Initiator
Groups 面板中。此時,在 Fibre Channel Initiators Groups 面板底部出現了一個新的條目(黃色亮顯)
將游標移到新的條目框上,然後釋放滑鼠鍵。此時會創建一個新的 FC 發起方組,其組名稱為
initiators-n,其中 n 是一個整數,如圖 13
所示。
將游標移到新發起方組條目上。在目標發起方組框右側會出現幾個圖標
單擊 Edit 圖標()顯示對話框
在 Name 域中,將新發起方組的默認名稱替換為選定名稱,單擊 OK。本例使用
sol-server 作為該發起方組名稱。
在此對話框中,您可以通過單擊 WWN 左側的復選框向組中添加其他 FC 發起方。
在 SAN 配置屏幕中單擊 APPLY 確認所有修改,如圖 15 所示。
定義 Sun ZFS 存儲設備項目
為了對相關卷進行分組,您可以在 Sun ZFS 存儲設備中定義一個項目。通過使用項目,可以繼承項目所提供文件系統和 LUN
的屬性。還可以應用限額和保留。
執行以下步驟創建一個項目:
選擇 Shares > Projects 顯示 Projects 屏幕
單擊左側面板頂部的 Projects 左側的 圖標顯示
Create Project 對話框
要創建一個新項目,輸入項目名稱,單擊 APPLY。在左側面板的 Projects 列表中出現了一個新項目。
選擇這個新項目查看其所含組件
定義 Sun ZFS 存儲設備 LUN
接下來,您將從一個現有存儲資源池中創建一個 LUN,供 Oracle Solaris 伺服器訪問。在下面的示例中,將創建一個名為
DocArchive1 的精簡供應 64 GB LUN。
我們將使用定義 FC 目標組一節中創建的 FC 目標組
FC-PortGroup 來確保可以通過 FC 協議訪問該 LUN。將使用定義 FC
發起方組一節中定義的發起方組 sol-server 來確保只有在 sol-server
組中定義的伺服器才可以訪問該 LUN。(在本例中,該發起方組只包含一個伺服器。)
執行以下步驟創建一個 LUN:
選擇 Shares > Projects 顯示 Projects 屏幕。
在左側 Projects 面板中,選擇該項目。然後選擇右側面板頂部的 LUNs
單擊 LUNs 左側的 圖標顯示 Create LUN
對話框,如圖 20 所示。
輸入合適的值以配置該 LUN。對於本例,將 Name 設置為
DocArchive1,Volume size 設置為 64 G,並且選中
Thin provisioned 復選框。將 Target Group 設置為 FC 目標組
FC-PortGroup,將 Initiator Group 設置為
sol-server。將 Volume block size 設置為
32k,因為該卷將保存 Oracle Solaris ZFS 文件系統。
單擊 APPLY 創建該 LUN 使其供 Oracle Solaris 伺服器使用。
配置 LUN 以供 Oracle Solaris 伺服器使用
現在我們已准備好了 LUN,可以通過 FC 發起方組使用它了。接著必須執行以下步驟,配置 LUN 以供 Oracle Solaris 伺服器使用:
發起一個連接 Sun ZFS 存儲設備的 Oracle Solaris FC 會話,如清單 1 所示。由於在發起該 FC 會話前已創建了 LUN,該
LUN 將會自動啟用。
清單 1. 發起 Oracle Solaris FC 會話
root@solaris:~# cfgadm -al c8 c9
root@solaris:~# cfgadm -c configure c8::210100e08bb2a1cf
root@solaris:~# cfgadm -c configure c9::210000e08b92a1cf
root@solaris:~# cfgadm -al -o show_FCP_dev c8 c9
root@solaris:~#
驗證對 FC LUN 的訪問,如清單 2 所示。
清單 2. 驗證對 FC LUN 的訪問
root@solaris:~# devfsadm -c ssd
root@solaris:~# tail /var/adm/messages
[...]
[...]
在本例中,多路徑狀態最初顯示為 degraded,因為此時只識別了一個路徑。進一步,多路徑狀態更改為
optimal,因為存在多個到達卷的路徑。
磁碟設備現在同樣可供內部伺服器磁碟使用。
格式化 LUN,如清單 3 所示。
清單 3. 格式化 LUN 格式
root@solaris:~# format
Searching for disks...done
: configured with capacity of 63.93GB
AVAILABLE DISK SELECTIONS:
[...]
Specify disk (enter its number): 4
selecting
[disk formatted]
Disk not labeled. Label it now? y
FORMAT MENU:
disk - select a disk
type - select (define) a disk type
partition - select (define) a partition table
current - describe the current disk
format - format and analyze the disk
repair - repair a defective sector
label - write label to the disk
analyze - surface analysis
defect - defect list management
backup - search for backup labels
verify - read and display labels
save - save new disk/partition definitions
inquiry - show vendor, proct and revision
volname - set 8-character volume name
!<cmd> - execute <cmd>, then return
quit
format> q
在准備好的 LUN 上構建 Oracle Solaris ZFS 文件系統,為此創建一個新的 ZFS 池、將此設備添加到 ZFS 池中,並創建 ZFS
文件系統,如清單 4 的示例所示。
清單 4. 構建 Oracle Solaris ZFS 文件系統
root@solaris:~# zfs createzpool create docarchive1 \
root@solaris:~# zfs list
[...]
root@solaris:~# zfs create docarchive1/index
root@solaris:~# zfs create docarchive1/data
root@solaris:~# zfs create docarchive1/logs
root@solaris:~# zfs list
[...]
df(1) 命令的最後兩行輸出表明,現在大約有 64 GB 新空間可供使用。轉載僅供參考,版權屬於原作者。祝你愉快,滿意請採納哦
❹ 光纖線的光纖通道
在高端的伺服器/工作站硬碟中,還會採用光纖通道作為SCSI硬碟介面。光纖通道是高性能的連接標准,用於伺服器、海量存儲子網路、外設間通過集線器、交換機和點對點連接進行雙向、串列數據通訊。對於需要有效地在伺服器和存儲介質之間傳輸大量資料而言,光纖通道提供遠程連接和高速帶寬。它是適於存儲區域網、集群計算機和其它資料密集計算設施的理想技術。其介面傳輸速度分為1GB和2GB等等。
一、光纖通道技術起源信息時代數據量的爆炸增長給存儲技術的發展提供了良好的機遇,現在信息主管們更多考慮的事情是,如何對數據進行安全的存儲、管理及使用。因此,人們不僅對存儲設備容量、性能等方面的需求越來越高,同時對存儲系統也提出了高性能、高可靠性、並能夠長距離傳輸的技術要求。光纖通道(Fiber Channel)技術正是在這一需求的驅動下誕生的。目前,在存儲系統的設計中,凡是涉及到對大型關系資料庫進行操作,對海量數據進行讀取的業務系統,一般都傾向於採用存儲區域網路(Storage Area Networks,)架構。存儲區域網路(以下簡稱「SAN」)是建立在網路化的I/O存儲協議基礎之上,可使伺服器與存儲設備之間進行「any to any」連接通信的網路系統。SAN的發展帶動了光纖通道技術的發展,而光纖通道體系結構的發展,為SAN的技術構想鋪平了道路。光纖通道技術是一種基於光纖通道的協議體系結構,始於1989年,於1994年10月制定了相應的ANSI標准。光纖通道技術的傳輸介質除光纜之外,還有銅纜等其他傳輸載體,但是國際上通常將其稱為光通道。光纖通道技術能得以迅速發展、廣泛應用(體現在主流採用FC技術的SAN系統大量出現),不僅僅因為光纖通道具有更高的帶寬、更長的連接距離、更好的安全性和擴展性,更重要的是光纖通道技術融合了通道技術和網路技術的優勢,利用光纖通道網路可以創造一個有別於我們所熟知的區域網(LAN)甚至城域網(MAN)的存儲區域網路(SAN)。 SAN不是一種產品,而是配置網路化存儲的一種方法,其主要思路是將傳統網路上的數據交換轉換到主要由存儲設備和資料庫伺服器組成的SAN上。藉助於光纖通道技術,SAN支持遠距離通信,並且將數據存儲與應用服務徹底分開,使得存儲設備能夠成為所有接入SAN的伺服器可高速、安全、可靠訪問的共享資源;同時,SAN也允許各個存儲設備,如磁碟陣列和磁帶庫,無需通過專用的中間伺服器即可協同工作。SAN解決了在傳統LAN中一旦出現大量數據訪問會大幅度降低網路性能的問題,使得數據的訪問、備份和恢復不影響LAN的性能,從根本上保證了應用系統的服務質量,並可大幅度地減少管理費用支出。二、光纖通道協議和分層模型光纖通道是一種技術標准,是由美國國家標准協會(ANSI)委託的幾個委員會共同開發的一組集成標準的通用名稱,是為提高多硬碟存儲系統的速度和靈活性而設計的高性能介面標准。它獨立於介質,支持同時傳輸多種不同協議,如IPI、IP、FICON、FCP(SCSI)等協議,適用於伺服器、海量存儲子網路、外設之間通過集線器、交換機和點對點連接進行雙向、串列數據通訊。正如在乙太網中IP、NetBIOS和SNA等協議均可在單一乙太網適配器上同時使用,是因為所有這些協議在乙太網中都被得到映射一樣,各種網路層的通訊協議也可以通過協議映射在光纖通道上得以實現。光纖通道技術的優點主要體現在:(1)高帶寬,目前已實現200MB/s數據傳輸率,400MB/s已通過測試;(2)高容量定址能力及擴容能力,可接入1600萬節點;(3)數據高度集中及存儲能力的全局共享;(4)每對節點間的長連接距離,多模光纜達500米,單模光纜可達10公里;(5)模塊化的擴容和連接方式;(6)利用光纖交換機及相關軟體可建立高可用或容錯服務系統;(7)可方便協助建立負載均衡及伺服器集群系統。光纖通道技術是結合了「通道技術」和「網路技術」的優點而開發出來的新技術:通道技術是硬體密集型技術,是因為它是為了在緩存區間快速傳輸大量的數據而設計的,可以直接連接設備而不需要使用太多的邏輯;網路技術是軟體密集型技術,是因為數據包需要在網路上被路由到許多設備中的某一個節點上,此外網路技術有操作大量節點的能力。光纖通道技術從設計之初就將通道技術和網路技術的上述優勢融合在一起。 光纖通道協議中定義了五個獨立層次,從物理介質到傳輸於光纖通道中的高層協議,包含了光纖通道技術的全貌。以下是這五層的功能模塊: ① FC-0,物理層,定義了連接的物理埠特性,包括介質和連接器(驅動器、接收機、發送機等)的物理特性、電氣特性和光特性、傳輸速率以及其它的一些連接埠特性。物理介質有光纖、雙絞線和同軸電纜。該層定義了光如何在光纖上傳輸以及發送器與接收器之間如何在各種物理介質上工作。②FC-1,傳輸協議,FC-1根據ANSI X3 T11標准,規定了8B/10B的編碼方式和傳輸協議,包括串列編碼、解碼規則、特殊字元和錯誤控制。傳輸編碼必須是直流平衡以滿足接收單元的電氣要求。特殊字元確保在串列比特流中出現的是短字元長度和一定的跳變信號,以便時鍾恢復。該層承擔著取得一系列信號並將其編碼成可用字元數據的責任。③ FC-2,幀協議,定義了傳輸機制、包括幀定位、幀頭內容、使用規則以及流量控制等。光纖通道數據幀長度可變,可擴展地址。用於傳輸數據的光纖通道數據幀長度最多達到2K,因此非常適合於大容量數據的傳輸。幀頭內容包括控制信息、源地址、目的地址、傳輸序列標識和交換設備等。64位元組可選幀頭用於其它類型網路在光纖通道上傳輸時的協議映射。光纖通道依賴數據幀頭的內容來引發操作。④ FC-3,公共服務,提供高級特性的公共服務,即埠間的結構協議和流動控制,它定義了三種服務:條帶化(Striping)、搜索組(Hunt Group)和多播(Multicast)。條帶化的目的是為了利用多個埠在多個連接上並行傳輸,這樣I/O傳輸帶寬能擴展到相應的倍數;搜索組用於多個埠去響應一個相同名字地址的情況,它通過降低到達〃占線〃的埠的概率來提高效率;多播用於將一個信息傳遞到多個目的地址。⑤ FC-4,協議映射層,定義了光纖通道的底層跟高層協議(Upper Layer Protocol)之間的映射關系以及與現行標準的應用介面,這里的現行標准包括現有的所有通道標准和網路協議,如SCSI介面和IP、ATM、HIPPI等。?由此可見,光纖通道協議棧是多種高層數據協議的傳輸載體,尤其以傳輸SCSI和IP數據為主。作為載體傳輸高層數據協議的過程,實際上就是一個把高層數據協議映射到協議棧物理層傳輸服務的過程。其中,最常用到的光纖路徑協議(Fibre Channel Protocol)就是SCSI數據、命令和狀態信息到FC物理層傳輸服務的映射。FCP具有在所有光纖路徑拓撲結構及所有類型服務上工作的獨立性。以下是映射到光纖通道上的協議:① 小型計算機系統介面(SCSI),即光纖路徑協議(FCP)的SCSI-3協議的映射,是映射到光纖路徑的主要協議。② IP協議。③ 可視化介面結構(VIA)。④ 高性能並行介面(HIPPI)。⑤ IEEE 802邏輯鏈接控制層。⑥ 單位元組指令代碼集(SBCCS),SBCCS是在IBM大型系統中使用的ESCON存儲I/O路徑中指令和控制協議的實現。⑦ 非同步傳輸模式適配層5(AAL5)。⑧ 光纖連接(FICON),FICON是將IBM S/390主機架構中的ESCON網路通信協議映射為光纖路徑網路上的一個上層協議。1.光纖通道網路的物理層光纖通道網路的物理層由以下三個基本的物理單元組成:(1)埠:用於連接伺服器系統與光纖交換機的介面、或用於連接存儲設備與光纖交換機的介面。(2)網路設備:使用光纖協議進行通訊的光纖交換機。(3)線纜:用於伺服器介面與光纖交換機介面之間的連線、或用於存儲設備的介面與光纖交換機介面之間的連線。2.網路名字和地址元素 光纖網路中的網路名字和地址的基本元素如下:全局名、埠地址、仲裁環物理地址、簡單名字伺服器。(1)全局名 全局名World Wide Name(WWN)指分配給每個產品的一個8位元組的標識符,可用於光纖網路中的一個埠。WWN被存儲在非易失性的存儲器中,其格式由IEEE定義,用以為每個產品在其安裝網路中提供唯一的標識。在一個節點最初登陸到一台交換機上時,可以和該交換機交換一個N埠的完全的WWN,如果交換機上沒有該N埠的信息,就會有一個注冊過程,在此過程中,N埠發送自身信息給交換機,交換機將這些信息放到他的簡單名字伺服器中,從而使其它過程和應用能夠訪問它。(2)埠地址 在光纖網路中有兩種埠地址:固定地址和動態地址。① 固定地址:每個光纖通道可識別設備都擁有一個固定光纖通道地址,這與每塊乙太網卡所擁有的MAC地址相似。該固定地址全球唯一,其他設備可以通過這一地址對其進行訪問。② 動態地址:為支持高層編址,光纖通道在Fabric域內定義了一個24位動態標識地址。每一個N_Port都擁有一個在Fabric域內唯一的24位N_Port標識。N_Ports既可以通過協議獲得其預設定的N_Port標識,也可以在由Fabric在設備登錄時動態分配。(3)仲裁環物理地址 仲裁環物理地址(ALPA)為單位元組,它唯一地標識了環網上的每一個埠。環網中的每個埠都存儲了該環中所有其他埠的地址,從而提供了在環中通信的機制。通過埠地址可以判別一個環上的埠是公有的還是私有的。(4)簡單名字伺服器簡單名字服務提供一種瘦目錄服務。節點、交換式光纖網路和應用程序通過使用簡單名字服務獲取埠的訪問信息。3.服務級別服務級別定義了在數據傳輸中採用何種機制,不同的服務級別用於不同的數據。服務級別分為五類:級別1:帶確認的面向連接的服務;級別2:帶確認的無連接服務;級別3:無確認的無連接的服務;級別4:面向連接的部分帶寬服務;級別F:交換機間通信格式。 流控制就是一種定義於服務級別中的機制,分為端對端的流控制和緩存區到緩存區的流控制。(1)端對端的流控制,是接收埠傳輸一個返回幀給發送者來確認收到傳輸幀;當發送者收到了應答幀(ACK)的反饋,就會將信用值設為1,這樣就可以發送下一幀了。(2)緩存區到緩存區的流控制,是用於fabric埠的節點埠之間的或者兩個節點埠之間的用來保證設備能夠接收到最大數量幀的機制。一個R-RDY(接收方就緒)原語信號發送出去,就表明接收者可以接受幀了;如果接收者發出一定數量的R-RDY信號,說明它有足夠的緩存空間來接收這一數量的幀。除了流控制之外,服務級別還指明連接是否是專用的。對於一個連接型的傳輸過程,不能發送一個不是傳送到專用接受者地址的幀。另外,不能在某個級別中發送不是同一級別的幀,這樣才可以保證連接能夠使用全部帶寬。4.埠類型 光纖通道網路中的所有組件(即設備)都使用埠作為網路的連接。光纖通道網路中的埠包括以下幾種基本類型:N-port 埠、F-port 埠、L-port 埠、NL-port 埠、FL-port 埠、E-port 埠、G-port 埠。其中N、L和NL埠被用於光纖通道網路中的終端結點,F、FL、E和G埠在光纖交換機中實現。①N-port 埠和F-port 埠 最初的光纖通道網路中包括兩種類型的埠:一種是N-port埠的網路埠;另一種是F-port埠的交換光纖埠。N-port埠是訪問光纖通道網路上的存儲設備和計算機系統上的埠,任務是初始化及接收幀,如果沒有N-port 埠,就不會有網路上的數據通信;F-port 埠是光纖交換機上的埠,作用是代表N-port 埠提供管理和連接服務,這些服務是為每對N-port 埠之間(主機系統與存儲設備)的通信提供的。在N-port 埠和F-port 埠之間,是一對一的關系。在光纖存儲區域網中的光纖交換機上,僅有一個N-port埠和F-port 埠相連接,光纖通道網路中其它N-port 埠和該N-port 埠之間的通信,通過其各自在交換機上的埠初始化進程和該N-port 埠的通信來實現。無論N-port 埠是發送還是接收數據,它總是和F-port 埠通信。在沒有數據傳輸的時候,N-port 埠向交換機上對應的F-port 埠發送IDLE幀,在N-port 埠和F-port 埠之間建立一種「心跳」,從而能很快檢測到可能發生的連接中的問題。②L-port 埠 L-port 埠存在於光纖通道環網中。和交換式網路不同,環狀網路中的節點共享一個線纜帶寬的結構。和交換式網路結構中的N-port 埠用來初始化以和F-port 埠通信相類似,L-port 埠被設計來初始化和該環中的其它L-port 埠的直接通信。但是,在光纖環網中沒有和F-port 埠相對應的埠名稱。因為光纖環網是一個邏輯環,被設計在沒有網路集線器的環境下工作,因此,如果未被要求,集線器不能為環網提供既定的埠功能。光纖環網中的集線器僅僅起到連接以及防止失效的作用。③NL-port 埠和FL-port 埠 當光纖通道環路加入到光纖通道網路中時,必須允許N-port 埠節點和L-port 埠節點之間進行通信,為此定義了兩個新的埠:FL-port 埠和NL-port 埠。FL-port 埠是光纖交換機上的埠,在光纖通道網路中允許其作為一個特殊的節點加入進來。光纖通道環網為FL-port 埠保留僅有的一個地址,即在同一時刻不可能同時有兩個光纖交換機進行通信。NL-port 埠位於環網內的埠,具有N-port 埠和L-port 埠的雙重能力,同時支持交換式光纖網和光纖環網,從而使得交換式光纖網和光纖環網之間的通信成為了可能。④E-port 埠和G-port 埠 在光纖交換機中,還有兩種常見的埠,他們分別是E-port 埠和G-port 埠。G-port 埠是「萬能」埠,它能用於交換機中如F-port 埠和FL-port 埠等的不同埠。E-port 埠是一種特別的埠,用於光纖交換機的級聯。以上是光纖通道網路中能遇到的各種埠。我們在國土資源部的存儲平台中使用的光纖交換機是Brocade光纖交換機。此光纖交換機的埠支持自配置功能。自配置埠能夠檢測到所有連接的另一端的埠模式,並自動配置成支持該模式的操作方式。5.線纜與介質 SAN的很多特徵是由網路的物理布局規劃來決定的,在SAN中選擇的介質類型將會影響到SAN的擴展性和功能性。介質類型有兩種選擇:銅芯線和光纖。①銅芯線 銅芯線的優點在於它是連接SAN部件中最便宜的介質。銅芯線通常是150歐姆的銅芯雙絞線。銅芯線的傳輸速率為100MB/S的千兆位傳輸,它的有效傳輸路徑是在0到25米之內不會有任何衰減。銅芯線的兩端通常使用HSSDC連接器或DB-9陽連接器。②多模光纖 多模光纖的直徑通常有50和62.5微米兩種規格,它們之間並沒有速度上的差異。多模光纖的波長范圍為850納米和1300納米兩種。850納米波長的光是可見的,對人眼無害。1300納米波長是不可見的,而且對視網膜有害。多模光纖兩端接頭的類型很多,包括SC、LC和 MT-RJ等。多模光纖使用的是一種聚集的LED而不是真正的激光。③單模光纖 單模光纖適用於長距離的信號傳輸。它的波長是1300納米,是不可視的,對人眼有害。單模光纖的直徑為9微米,由於它的直徑如此之小,使用它進行長距離傳送信號時,光波不易被改變。所以在長距離的SAN中,單模光纖是最好的一種解決方式。由於單模光纖的直徑很小,所以它的潛在發射速度也是最高的,理論極限速度是25Tb/s,而多模光纖的理論極限速度是10Gb/s。單模光纖本身並不比多模光纖或銅芯線貴出很多,價格的增加主要在於其收發器部件,因為它使用的是激光而不是LED。由於單模光纖的直徑非常小,所以對光纖收發器的精確度要求很高。④光纖接頭光纖接頭有很多類型,在實際的使用中只要連接是干凈的,那麼使用那種接頭對性能都不會有任何影響。在搭建SAN時應該盡量減少連接的數量,因為光會在其路徑設備中質量不好的連接之間來回反射。所以連接數量越少,SAN中產生錯誤信號的概率就越低。現在許多HBA(光纖介面卡,插在伺服器系統的PCI插槽中)卡中使用的銅芯接頭是HSSDC銅芯接頭。
❺ 網路存儲的SAN存儲區域網路
SAN(Storage Area Network存儲區域網路)通過光纖通道連接到一群計算機上。在該網路中提供了多台主機連接,但並非通過標準的網路拓撲(見圖)
SAN專注於企業級存儲的特有問題,主要用於存儲量大的工作環境。當前企業存儲方案所遇到問題的兩個根源是:數據與應用系統緊密結合所產生的結構性限制,以及目前小型計算機系統介面(SCSI)標準的限制。大多數分析都認為SAN是未來企業級的存儲方案,這是因為SAN便於集成,能改善數據可用性及網路性能,而且還可以減輕存儲管理作業。
SAN是目前人們公認的最具有發展潛力的存儲技術方案,而未來SAN的發展趨勢將是開放、智能與集成。NAS是目前增長最快的一種存儲技術,然而就二者的發展趨勢而言,在應用層面上SAN和NAS將實現充分的融合。可以說,NAS和SAN技術已經成為當今數據備份的主流技術,關鍵在於如何在此基礎上開發完善全方位、多層次的數據備份系統,在分布式網路環境下,通過專業的數據存儲管理軟體,結合相應的硬體和存儲設備,來對全網路的數據備份進行集中管理,從而實現自動化的備份、文件歸檔、數據分級存儲以及災難恢復等功能。
❻ 光纖如何配置靜態IP
光纖查靜態ip:
1.
如果是寬頻撥號的個人用戶,查詢不了;
2.
如果是公司單位要查詢公網ip,步驟如下:
1)打開網路;
2)然後輸入
ip;
3)點擊查詢;
4)搜索出來的地址就是公網的ip。
3.
配置靜態ip:
1)首先要寬頻是有固定ip的專線。
2)准備一台路由器。
3)把光纖收發器或者光貓出來的網線接路由器的wan口,然後第2根網線接電腦lan口和路由器的lan1234中的一個。
4)瀏覽器地址欄輸入路由器的管理地址帳號密碼進入路由器管理界面(路由器背面標簽上標的有)。
5)點擊設置向導--選擇靜態ip---輸入固定ip子網掩碼網關,保存重啟路由器就可以正常上網了。
❼ SAN(存儲區域網路)技術
1.1 SAN是什麼?
SAN網路(Storage Area Network,簡稱SAN),顧名思義就是存儲區域網路,SAN網路最初主要是指FC-SAN,當然發展到現階段目前常見的SAN有FC-SAN和IP-SAN,還有IB-SAN,其中FC-SAN為通過光纖通道協議轉發SCSI協議,IP-SAN通過TCP協議轉發SCSI協議。
1.2 SAN的組件:
(1)伺服器主機;(2)互聯設備:交換機和路由器;(3)存儲設備:磁碟陣列和備份設備;(4)這些設備連接起來;
1.3 SAN的結構
SAN實際是一種專門為存儲建立的獨立於TCP/IP網路之外的專用網路。目前一般的SAN提供2Gb/S到4Gb/S的傳輸數率,同時SAN網路獨立於數據網路存在,因此存取速度很快,另外SAN一般採用高端的RAID陣列,使SAN的性能在幾種專業存儲方案中傲視群雄。
SAN由於其基礎是一個專用網路,因此擴展性很強,不管是在一個SAN系統中增加一定的存儲空間還是增加幾台使用存儲空間的伺服器都非常方便。通過SAN介面的磁帶機,SAN系統可以方便高效的實現數據的集中備份。
目前常見的SAN有FC-SAN和IP-SAN,其中FC-SAN為通過光纖通道協議轉發SCSI協議,IP-SAN通過TCP協議轉發SCSI協議。
1.4 SAN的類型
SAN存儲網路架構主要分為FC-SAN和IP-SAN兩種。早期的SAN通常指採用光纖通道技術的存儲區域網路,等到iSCSI協議出現了以後,存儲業界就把SAN分為兩種,一種是FC-SAN和IP-SAN。
1.5 FC-SAN
架構上以光纖為傳輸媒介的FC-SAN的優點是傳輸速度塊(可達4G/s)、距離遠及高可靠性。
FC-SAN分為五種埠類型:N型、NL型、F型、FL型、以及E型。前兩種適用於主機和存儲設備,後三種適用於光纖交換機。
作為可靠地SAN核心設備,採用雙冗餘配置的光纖交換機具有可靠地穩定性和安全性,是FC-SAN的核心部件。每台伺服器通過兩塊光纖通道分別連接到互為冗餘的SAN光纖通道交換機上。類似的,磁碟陣列設備和SAN光纖通道交換機之間也通過兩條光纖通道連接。自動備份軟體備份的高速連接結構可實現快速備份與恢復、數據訪問與容災,允許於用戶將數據快速傳輸到存儲備份設備。
FC-SAN提供了一個高性能、可靠和經濟使用的解決方案,將存儲業界領先的伺服器、存儲設備、軟體和組網功能融為一體。
1.6 IP-SAN
IP-SAN是指為了實現網路中的數據而SCSI封裝串列,可支持企業數據的備份和容災、數據中心的建立,分為FCP、FCIP和iSCSI。
iFCP可以實現FC-SAN到IP-SAN的無縫連接,通過轉換FC幀的協議,將經過解析並剝離數據包之後的純數據加入TCP/IP協議,所以iFCP只具備IP地址。FCIP把FC幀封裝到IP數據包中,使得IP數據包中既保存了FC地址,有包含了IP地址,FCIP技術適用於遠距離的孤立的FC_SAN之間的互聯。iSCSI可以實現在普通的IP網路上直接傳輸SCSI數據包,通過將TCP/IP協議加入SCSI數據包來使用IP的探測設備和定址機制以及TCP中的分段和流量擁塞控制機制。
1.7 IP-SAN和FC_SAN對比
相比IP_SAN,FC-SAN在設備的穩定與可擴展兩個方面存在優勢,但是更為負責和昂貴,不適於中小企業使用,而IP_SAN價格低廉,操作簡單,在沒有距離限制上實現數據的遠程鏡像和遷移,對於跨平台的數據共享更加有助。
❽ 光釺交換機怎麼設置
導語:工業交換機,在使用時它的產品特性讓人們不得不服它的能賴,同時工業交換機給人的感覺也是高冷范。下面我為你整理的光釺交換機怎麼設置,希望對你有所幫助!
一、光纖交換機的基本簡介
隨著企業網路數據的不斷增加和網路應用的頻繁,許多企業開始意識到需要專門構建自己的存儲系統網路來滿足日益提升的數據存儲性能要求。當前,最為熱門的數據存儲網路就是SAN(Storage Area Network,存儲區域網路),就是把整個存儲當做一個單獨的網路與伺服器所在企業區域網連接。
它的特點就是採用傳輸速率較高的光纖通道與伺服器網路,或者SAN網路內部組件的連接,這樣,整個存儲網路就具有非常寬的帶寬,為高性能的數據存儲提供了保障。而在這種SAN存儲網路中,起著關鍵作用的就是我們常常聽到的光纖交換機(FC Switch,也有稱「光纖通道交換機」和「SAN交換機」的)了。因為這屬於一種新型的設備,而且與我們平常所見的、用到的乙太網交換機有太多的區別(主要體現在協議的支持上),所以許多讀者,甚至是已經用上SAN存儲網路的企業用戶都對SAN交換機一知半解。為此,本文就專門就SAN交換機選購時需要注意的事項向各位進行一番介紹,其實就是介紹一下SAN交換機的主要特點。先來簡單了解SAN交換機的由來,這樣可以使我們加深對SAN交換機的了解,不再充滿「神秘」色彩。
二、光纖交換機
光纖乙太網交換機是一款高性能的管理型的二層光纖乙太網接入交換機。用戶可以選擇全光埠配置或光電埠混合配置,接入光纖媒質可選單模光纖或多模光纖。該交換機可同時支持網路遠程管理和本地管理以實現對埠工作狀態的監控和交換機的設置。
光纖埠特別適合於信息點接入距離超出五類線接入距離、需要抗電磁干擾以及需要通信保密等場合適用的領域包括:住宅小區FTTH寬頻接入網路;企業高速光纖區域網;高可靠工業集散控制系統(DCS);光纖數字視頻監控網路;醫院高速光纖區域網;校園網路。
功能描述
無阻塞存儲-轉發交換模式,具有8.8Gbps的交換能力,所有埠可同時全線速工作在全雙工狀態支持6K 個MAC地址,具備自動的MAC地址學習、更新功能支持埠聚合,提供7組聚合寬頻幹路支持優先順序隊列,提供服務質量保證
支持802.1d生成樹協議/快速生成樹協議
支持802.1x基於埠接入認證
支持IEEE802.3x全雙工流量控制/半雙工背壓式流量控制
支持基於標記的VLAN/基於埠的VLAN/基於協議的VLAN,可提供255 個VLAN組,多達4K個VLAN
支持基於埠的網路接入控制
具有埠隔離功能
具有包頭阻塞(HOL)預防機制,最大限度地減少包丟失
支持埠與MAC地址綁定,MAC地址過濾
支持埠鏡像
具有SNIFF網路監聽功能
具有埠帶寬控制功能
支持IGMP偵聽組播控制
支持廣播風暴控制
網路管理:
遠程集中網管:支持SNMP,基於Web的管理,Telnet;基於指定埠或802.1Q VLAN,以增加安全性。
本地獨立網管:通過標準的RS-232介面實現
網路標准和協議:
IEEE:
802.3,802.3u, 802.3z,802.3ab, 802.1d, 802.1p,802.1q, 802.1v, 802.3ad, 802.3x,802.1x
IEFT:
RFC1157 SNMP, RFC 1112/2236 IGMP, RFC854 Telnet, RFC 1123/1493/1643 MIB
選購須知
光纖乙太網交換機的選購主要需要考慮光口模塊的配置
百兆埠
單纖單模,雙波長1550nm/1310nm,20/40km
雙纖單模,單波長1310nm或1550nm,20/40/60km
雙纖多模,單波長1310nm,2km
千兆埠
雙纖50/125μm多模,波長 850nm,550m;
雙纖62.5/125μm多模,波長850nm,275m;
雙纖單模,波長1310nm或1550nm,10/20/40/60km
萬兆埠
SFP+,10GBase-SR萬兆光模塊,波長850nm,多模300m
SFP+,10GBase-LR萬兆光模塊,波長1310nm或1550nm,單模10/20/40/60/80km
三、光纖交換機的由來是什麼
在以前我們見到的數據存儲基本上都是在伺服器上直接連接幾個SCSI、IDE之類的磁碟進行的,這也就是我們常常聽說的DAS(直接連接存儲)方式。這種點對點的磁碟系統很顯然存在著很難擴展和存儲性能很難提高的不足。不僅如此,受IDE和SCSI介面物理性能的限制,與它連接的磁碟通常最多隻能有20米以內的連接距離,大大限制了磁碟存儲系統的擴展。
為了解決以上DAS存儲方式的這些諸多不足,網路設備商和標准制定專家開始考慮開發一種新型的存儲技術,從根本上解決DAS存儲方式的傳輸速率和連接距離問題。最開始人們想到是一種把存儲系統獨立起來,作為一個網路設備放在網路節點上,這樣既可以大大減少伺服器的數據存儲負荷,又可以極大地擴展磁碟存儲系統,這就是後來的NAS(網路附加存儲)方式。
這種存儲方式的確在相當大程度上解決了以前DAS存儲方式的不足,可以滿足絕大多數中小型企業進行本地存儲的需求。而且它最大的特點就是簡單易行,採用了與乙太網相同的IP協議,網路管理員可輕易地掌握NAS存儲系統的部署,受到許多企業的廣泛歡迎。但NAS還是沒有從根本上解決磁碟存儲性能和連接距離問題,總的來說磁碟存儲性能並沒有得到根本提高,只是提高了網路出口帶寬。
正是因為NAS仍存著上述不足,所以人們繼續開發了一種全新的網路存儲方式,那就是本文前面介紹的SAN存儲方式了。網路結構如下圖所示。這種存儲方式中最大的特點就是專為存儲設備提供了千兆串列網路訪問能力的光纖通道(Fibre Channel)協議,然後在光纖通道協議的第四層上建立了以光纖通道為基礎的.,用於存儲的SCSI協議、用於網路的IP協議以及映射到網路架構上的用於集群的虛擬介面(VI)協議,這樣就可多方面支持各種匯流排類型的網路設備和通道。光纖通道協議綜合了許多優點,如網路范圍的最遠距離可達到10公里,可以使用多種介質的簡單串列線纜、千兆網路速率以及可以在同一線纜上同時使用多種協議。
SAN是一個由存儲設備和系統部件構成的網路,所有的通信都在一個光纖通道的網路上完成,可以被用來集中和共享存儲資源,而不再是NAS存儲方式那樣僅是作為一個網路節點的網路設備。SAN不但提供了對數據設備的高性能連接,提高了數據備份速度,還增加了對存儲系統的冗餘連接,提供了對高可用群集系統的支持。簡單地說,SAN是連接存儲設備和伺服器的專用光纖通道網路(與乙太網不同),但它和乙太網有類似的架構,也是由支持光纖通道的伺服器、光纖通道卡(網卡)、光纖通道集線器/交換機和光纖通道存儲裝置所組成。從技術上來講,SAN網路最重要的三個組成部分就是:設備介面(如SCSI、光纖通道、ESCON等)、連接設備(交換機、網關、路由器、Hub等)和通信控制協議(如IP和SCSI等)。這三個組件再加上附加的存儲設備和伺服器,構成一個SAN系統。
❾ 為什麼需要專用存儲區域網路 為什麼需要專用存儲區域網路
如下:
存儲區域網路(SAN:Storage Area Network),是一種通過網路連接存儲設備和應用伺服器的存儲構架,採用網狀通道(Fibre Channel ,簡稱FC,區別與Fiber Channel光纖通道)技術。
通過FC交換機連接存儲陣列和伺服器主機,建立專用於數據存儲的區域網路,這個網路專用於應用伺服器和存儲設備之間的訪問。
早期的SAN存儲系統多數由FC光纖交換機連接存儲設備和應用伺服器,導致很多用戶誤以為SAN就是光纖通道設備,只能採用FC協議。其實SAN代表的是一種專用於存儲的網路架構,與協議和設備類型無關,隨著千兆乙太網的普及和萬兆乙太網的實現,SAN又分為FC SAN和IP SAN。
其中,通過光纖交換機連接應用伺服器和存儲設備,將數據和SCSI指令通過FC協議承載,這樣的解決方案稱為FC SAN;而通過千兆/萬兆專用的乙太網絡連接應用伺服器和存儲設備,將數據和SCSI指令通過TCP/IP協議承載,這樣的解決方案稱為IP SAN。
SAN實際是一種專門為存儲建立的獨立於TCP/IP網路之外的專用網路。目前一般的SAN提供2Gb/S到4Gb/S的傳輸數率,同時SAN網路獨立於數據網路存在,因此存取速度很快,另外SAN一般採用高端的RAID陣列,使SAN的性能在幾種專業存儲方案中傲視群雄。
SAN由於其基礎是一個專用網路,因此擴展性很強,不管是在一個SAN系統中增加一定的存儲空間還是增加幾台使用存儲空間的伺服器都非常方便。通過SAN介面的磁帶機,SAN系統可以方便高效的實現數據的集中備份。
目前常見的SAN有FC-SAN和IP-SAN,其中FC-SAN為通過光纖通道協議轉發SCSI協議,IP-SAN通過TCP協議轉發SCSI協議。
❿ 中小企業如何DIY自己的光纖存儲區域網
隨著企業數據量的海量增長,一些使用直聯存儲的企業開始考慮用存儲網路來解決問題。而為了滿足廣大中小企業用戶的需求,一些FC SAN(光纖存儲區域網)方案供應商推出了簡化的FC SAN解決方案,主要是想通過降低價格的手段推動FC SAN的普及。
目前市場上的入門級FC SAN方案中,銀興科技的Easy SAN可以成為一個不錯的選擇。該方案包含一台2U的TN-6012S-FFD磁碟陣列,一台Brocade SilkWorm 3252 光纖交換機、兩塊LSI 7102XP HBA卡、6組光纖模塊(SFP Transceiver)、4條光纖跳線以及軟體光碟。組建小型FC SAN環境所需的軟硬體已經包含其中,用戶基本不需要另外購買其它組件。更重要的是,Easy SAN 是一套真正「即插即用」的解決方案,用戶購買回套件後可以「DIY」安裝配置,而且過程相當簡單,就算之前完全沒有過光纖通道的新手,也能很快完成配置工作。
DIY搭建SAN存儲網路
我們向銀興科技借測一組Easy SAN套件,測試環境中包含1台運行Exchange Server 2003的Windows Server 2003伺服器,以及1台安裝MySQL的GentooLinux伺服器,這2台伺服器的資料庫原本都存放在本機硬碟內,也就是採用DAS存儲架構,我們打算運用Easy SAN 方案提供的軟硬體,將兩台伺服器內的資料集中存放到1台磁碟陣列中,測試整個安裝完成後能否順利運作。
第1步:選擇存儲網路類型
首先我們打開Easy SAN產品包裝箱,並逐一清點所有的主件和附件,由於組成元件的數量實在不少,一時間難免會有手足無措,不知從何下手之感,所幸在隨貨附的光碟內解說詳盡的快速安裝指南。按照上面的指示,第一個動作是要選擇所要配置的存儲網路類型,一種類型是將HBA卡裝在2台伺服器內,透過光纖交換機和磁碟陣列相連,這是最普遍的做法;另一種則是在1台伺服器上安裝2塊HBA卡,透過LSI Logic 的「Smart Path」軟體達成高可用度與負載平衡。
第2步:安裝HBA卡
我們分別在2台伺服器上安裝LSI 7102XP HBA卡,Gentoo Linux伺服器開機後正確辨認出這張卡的型號。並可以正常工作,Windows Server 2003伺服器則必須安裝驅動程序。重新開機之後才可以運行。LSI 7102XP HBA卡支援的作業系統相當完整,除了Windows之外,還包括各種版本的Unix、Linux、Netware等。相容性問題不大。
第3步:連接光纖跳線
接著我們取出光纖交換機和光纖磁碟陣列,在光纖接頭上安裝好SFP,將光纖跳線的兩端分別接上伺服器、磁碟陣列與光纖交換機,構成一個小型的存儲區域網路,完成硬體安裝工作。
第4步:啟動快速安裝精靈
接下來進行軟體的安裝設定,我們先在一台Windows主機上安裝EZ Setup Wizard快速安裝精靈,透過這個小軟體,只需簡單的5個步驟就能完成設定。第一步是將Brocade SilkWorm 3252交換機上的RS-232埠透過傳輸線連至Windows Server 2003伺服器,另一個RJ-45埠則連至區網路,程式會自動檢測到這兩個通訊埠並連線。需注意的是,RS-232傳輸線一定要用光纖交換機包裝箱內附的那條,一般傳輸線是連接不上的。
第5步:完成盤陣的連線
依序完成管理者密碼設定、指定交換機的IP地址、伺服器與存儲裝置連接光纖交換機的數量等動作,完成後界面上會出現光纖通道連接的狀況,依照指示將光纖跳線連接到指定的光纖交換機埠,就完成了FC SAN管理中最基本的分區(Zoning)動作,開啟伺服器上的邏輯磁碟管理員程序,重新掃描後即會產生新的磁碟區,這個磁碟區是由磁碟陣列共享出來的空間,用戶可定義磁碟代號,系統即會視為本地硬碟。最後我們將Exchange Server 2003和MySQL的資料庫移轉至FC SAN上,系統測試確定可以正常運行。
按照上述的步驟雖然可以很快完成配置,由於廠商已在一些程序復雜的地方預先完成設定,省略磁碟陣列的虛擬磁區(LUN)分割,光纖交換機的路徑指向動作,預先做好的配置通常是無法符合用戶的應用,必須視需求進行調整,這就必須對光纖交換機和磁碟陣列進行管理。
交換機與磁碟陣列的管理程序較復雜
光纖交換機方面有三種管理模式,一種是安裝Brocade Fabric Manager,按照軟機指示的步驟操作,就可熟悉整個設定流程;另一種是直接透過瀏覽器連接進入Brocade Web Tools,運用圖形界面的管理工具進行設定;最後一種是通過RS-232連線終端機,以命令列進行設定管理,較適合進階管理員採用。
磁碟陣列部分同樣也有三種管理模式,最簡單的方法是透過面板上的LCD顯示屏和功能鍵,就可以完成所有設定管理,包括RAID等級選擇與管理、磁碟區分配等,缺點是顯示屏太小,選項又相當多,操作起來略顯吃力;第二種是傳統的RS-232連線終端機模式的管理方式,只要安裝過SCSI界面磁碟陣列的使用者,相信對管理流程不陌生;第三種是在PC或伺服器上安裝的RAIDWatch圖形界面管理工具,透過磁碟陣列內建的網路端和區域網路連線,就可以從遠端執行所有的設定管理工作。
完成Easy SAN 的部署設定之後,我們在Windows伺服器上安裝IOmeter進行測試,在效能最佳化的情況下,資料讀取與寫入速率分別為164.5MB/s與151.9MB/s,這樣的效能以磁碟陣列預設的配置而言(3台250GB、7200rpm的Serial ATA硬碟,RAID 5磁碟陣列),算得上十分優異。我們在3天的測試期間不斷的以IOmeter進行高速傳輸測試,系統沒有出現資料錯誤訊息,顯示出這套自行配置的小型FC SAN仍有不錯的穩定性與可靠度。