1. 堆排序適用於什麼結構
堆排序一般使用在邏輯結構和物理結構當中。所謂的堆排序是指利用堆這種數據結構所設計的一種排序演算法。
2. 計算機二級的中的「堆排序法」是怎麼排的
堆排序就是將所有待排序的元素組成一個堆,然後不斷彈出堆頂的元素並調用函數維持堆序,直到所有元素均被彈出後,排序完成。被彈出的元素序列即一個有序數列。
一般做法是這樣:
當一個節點被插入時,將該節點放在堆的末尾(這是為了保證堆是完全二叉樹)然後將該節點與它的父節點比較,看該節點是否大於(或小於)其父節點,即判斷當前的堆是否滿足堆序。如果不滿足,則將該節點與其父節點交換。
再將該節點與其新的父節點做比較,依此類推,直到該節點不再需要與其父節點交換為止。(即滿足堆序時停止) 當一個根節點被彈出(即被從堆中刪除)時,將堆最尾部的節點移動到頭結點的位置,然後將該節點不斷與其子節點比較,如果不符合堆序則交換,直到符合堆序為止。
(2)堆排序通常採用什麼存儲結構擴展閱讀:
堆的操作
堆排序是指利用堆這種數據結構所設計的一種排序演算法。堆是一個近似完全二叉樹的結構,並同時滿足堆積的性質:即子結點的鍵值或索引總是小於(或者大於)它的父節點。
在堆的數據結構中,堆中的最大值總是位於根節點(在優先隊列中使用堆的話堆中的最小值位於根節點)。堆中定義以下幾種操作:
最大堆調整(Max Heapify):將堆的末端子節點作調整,使得子節點永遠小於父節點
創建最大堆(Build Max Heap):將堆中的所有數據重新排序
堆排序(HeapSort):移除位在第一個數據的根節點,並做最大堆調整的遞歸運算
3. 對元素序列如何進行堆排序
堆排序是藉助(完全二叉樹)結構來存儲數據的,二叉樹又是存儲在一維數組中的,是通過二叉樹的下標性質來存取數據。
首先,將數據存在一個數組中,通過二叉樹的性質,找到最後一個分支結點,比較該結點和其孩子結點的數據大小,將最小的數據交換到該分支結點;如果有交換,並且孩子結點不是葉結點,再以該孩子結點為分支結點,與它的孩子結點比較。
以上處理了一個分支結點,再往左往上依次處理所有分支結點,一直處理到根結點,此時,序列中最小的數就在根結點的位置,初始數據構成了初始堆。
如果要用堆排序來對序列排序,建完初始堆,將根結點數據取出(是堆中元素數據最小的元素),用最後一個葉結點數據做為根結點,並將其沉底(將數據小的換上來);如此取法,將所有元素處理完畢,排序完成。
4. 幾種排序方法的存儲結構
排序有內部排序和外部排序,內部排序是數據記錄在內存中進行排序,而外部排序是因排序的數據很大,一次不能容納全部的排序記錄,在排序過程中需要訪問外存。
我們這里說說八大排序就是內部排序。
當n較大,則應採用時間復雜度為O(nlog2n)的排序方法:快速排序、堆排序或歸並排序序。
快速排序:是目前基於比較的內部排序中被認為是最好的方法,當待排序的關鍵字是隨機分布時,快速排序的平均時間最短;
1.插入排序—直接插入排序(Straight Insertion Sort)
基本思想:
將一個記錄插入到已排序好的有序表中,從而得到一個新,記錄數增1的有序表。即:先將序列的第1個記錄看成是一個有序的子序列,然後從第2個記錄逐個進行插入,直至整個序列有序為止。
要點:設立哨兵,作為臨時存儲和判斷數組邊界之用。
直接插入排序示例:
如果碰見一個和插入元素相等的,那麼插入元素把想插入的元素放在相等元素的後面。所以,相等元素的前後順序沒有改變,從原無序序列出去的順序就是排好序後的順序,所以插入排序是穩定的。
5. 請教個堆排序的問題,謝謝了!
http://www.sssdf.com/oshow.jsp?c=4&id=17&id2=7
堆排序
1、 堆排序定義
n個關鍵字序列Kl,K2,…,Kn稱為堆,當且僅當該序列滿足如下性質(簡稱為堆性質):
(1) ki≤K2i且ki≤K2i+1 或(2)Ki≥K2i且ki≥K2i+1(1≤i≤ )
若將此序列所存儲的向量R[1..n]看做是一棵完全二叉樹的存儲結構,則堆實質上是滿足如下性質的完全二叉樹:樹中任一非葉結點的關鍵字均不大於(或不小於)其左右孩子(若存在)結點的關鍵字。
【例】關鍵字序列(10,15,56,25,30,70)和(70,56,30,25,15,10)分別滿足堆性質(1)和(2),故它們均是堆,其對應的完全二叉樹分別如小根堆示例和大根堆示例所示。
2、大根堆和小根堆
根結點(亦稱為堆頂)的關鍵字是堆里所有結點關鍵字中最小者的堆稱為小根堆。
根結點(亦稱為堆頂)的關鍵字是堆里所有結點關鍵字中最大者,稱為大根堆。
注意:
①堆中任一子樹亦是堆。
②以上討論的堆實際上是二叉堆(Binary Heap),類似地可定義k叉堆。
3、堆排序特點
堆排序(HeapSort)是一樹形選擇排序。
堆排序的特點是:在排序過程中,將R[l..n]看成是一棵完全二叉樹的順序存儲結構,利用完全二叉樹中雙親結點和孩子結點之間的內在關系【參見二叉樹的順序存儲結構】,在當前無序區中選擇關鍵字最大(或最小)的記錄。
4、堆排序與直接插入排序的區別
直接選擇排序中,為了從R[1..n]中選出關鍵字最小的記錄,必須進行n-1次比較,然後在R[2..n]中選出關鍵字最小的記錄,又需要做n-2次比較。事實上,後面的n-2次比較中,有許多比較可能在前面的n-1次比較中已經做過,但由於前一趟排序時未保留這些比較結果,所以後一趟排序時又重復執行了這些比較操作。
堆排序可通過樹形結構保存部分比較結果,可減少比較次數。
5、堆排序
堆排序利用了大根堆(或小根堆)堆頂記錄的關鍵字最大(或最小)這一特徵,使得在當前無序區中選取最大(或最小)關鍵字的記錄變得簡單。
(1)用大根堆排序的基本思想
① 先將初始文件R[1..n]建成一個大根堆,此堆為初始的無序區
② 再將關鍵字最大的記錄R[1](即堆頂)和無序區的最後一個記錄R[n]交換,由此得到新的無序區R[1..n-1]和有序區R[n],且滿足R[1..n-1].keys≤R[n].key
③ 由於交換後新的根R[1]可能違反堆性質,故應將當前無序區R[1..n-1]調整為堆。然後再次將R[1..n-1]中關鍵字最大的記錄R[1]和該區間的最後一個記錄R[n-1]交換,由此得到新的無序區R[1..n-2]和有序區R[n-1..n],且仍滿足關系R[1..n-2].keys≤R[n-1..n].keys,同樣要將R[1..n-2]調整為堆。
……
直到無序區只有一個元素為止。
(2)大根堆排序演算法的基本操作:
① 初始化操作:將R[1..n]構造為初始堆;
② 每一趟排序的基本操作:將當前無序區的堆頂記錄R[1]和該區間的最後一個記錄交換,然後將新的無序區調整為堆(亦稱重建堆)。
注意:
①只需做n-1趟排序,選出較大的n-1個關鍵字即可以使得文件遞增有序。
②用小根堆排序與利用大根堆類似,只不過其排序結果是遞減有序的。堆排序和直接選擇排序相反:在任何時刻,堆排序中無序區總是在有序區之前,且有序區是在原向量的尾部由後往前逐步擴大至整個向量為止。
(3)堆排序的演算法:
void HeapSort(SeqIAst R)
{ //對R[1..n]進行堆排序,不妨用R[0]做暫存單元
int i;
BuildHeap(R); //將R[1-n]建成初始堆
for(i=n;i>1;i--){ //對當前無序區R[1..i]進行堆排序,共做n-1趟。
R[0]=R[1];R[1]=R[i];R[i]=R[0]; //將堆頂和堆中最後一個記錄交換
Heapify(R,1,i-1); //將R[1..i-1]重新調整為堆,僅有R[1]可能違反堆性質
} //endfor
} //HeapSort
(4) BuildHeap和Heapify函數的實現
因為構造初始堆必須使用到調整堆的操作,先討論Heapify的實現。
① Heapify函數思想方法
每趟排序開始前R[l..i]是以R[1]為根的堆,在R[1]與R[i]交換後,新的無序區R[1..i-1]中只有R[1]的值發生了變化,故除R[1]可能違反堆性質外,其餘任何結點為根的子樹均是堆。因此,當被調整區間是R[low..high]時,只須調整以R[low]為根的樹即可。
"篩選法"調整堆
R[low]的左、右子樹(若存在)均已是堆,這兩棵子樹的根R[2low]和R[2low+1]分別是各自子樹中關鍵字最大的結點。若R[low].key不小於這兩個孩子結點的關鍵字,則R[low]未違反堆性質,以R[low]為根的樹已是堆,無須調整;否則必須將R[low]和它的兩個孩子結點中關鍵字較大者進行交換,即R[low]與R[large](R[large].key=max(R[2low].key,R[2low+1].key))交換。交換後又可能使結點R[large]違反堆性質,同樣由於該結點的兩棵子樹(若存在)仍然是堆,故可重復上述的調整過程,對以R[large]為根的樹進行調整。此過程直至當前被調整的結點已滿足堆性質,或者該結點已是葉子為止。上述過程就象過篩子一樣,把較小的關鍵字逐層篩下去,而將較大的關鍵字逐層選上來。因此,有人將此方法稱為"篩選法"。
具體的演算法【參見教材】
②BuildHeap的實現
要將初始文件R[l..n]調整為一個大根堆,就必須將它所對應的完全二叉樹中以每一結點為根的子樹都調整為堆。
顯然只有一個結點的樹是堆,而在完全二叉樹中,所有序號 的結點都是葉子,因此以這些結點為根的子樹均已是堆。這樣,我們只需依次將以序號為 , -1,…,1的結點作為根的子樹都調整為堆即可。
具體演算法【參見教材】。
5、大根堆排序實例
對於關鍵字序列(42,13,24,91,23,16,05,88),在建堆過程中完全二叉樹及其存儲結構的變化情況參見【動畫演示】。
6、 演算法分析
堆排序的時間,主要由建立初始堆和反復重建堆這兩部分的時間開銷構成,它們均是通過調用Heapify實現的。
堆排序的最壞時間復雜度為O(nlgn)。堆排序的平均性能較接近於最壞性能。
由於建初始堆所需的比較次數較多,所以堆排序不適宜於記錄數較少的文件。
堆排序是就地排序,輔助空間為O(1),
它是不穩定的排序方法。
http://www.sssdf.com/oshow.jsp?c=4&id=17&id2=7
6. 對元素序列如何進行堆排序
首先說一個知識點,就是用數組操作二叉樹(把堆看成二叉樹容易理解)
一個數組a[n], a[0]不考慮舍棄,a[1]為根節點那麼,a[i]的兩個孩子節點就是a[2i]和a[2i+1] (不理解的話自己做下實驗),好了那麼k[i]<=k[2i]且k[i]<=k[2i+1](1<=i<= n),當然,這是小根堆,大根堆則換成>=號.
用小根堆排序的基本思想(用小根堆排序其排序結果是遞減有序的,大根堆排序是遞增有序)
先將初始數組k[1..n]建成一個小根堆
此堆為初始的無序區再將最小的記錄k[1](即堆頂)和無序區的最後一個記錄k[n]交換,由此得到新的無序區k[1..n-1]和有序區k[n],且滿足k[1..n-1]<=k[n]
由於交換後新的根節點k[1]可能違反堆性質,故應將當前無序區k[1..n-1]調整為堆.然後再次對k[1..n-1]進行上面重復的操作.直到無序區只有一個元素為止.那麼排序也就算結束了.
這就是堆排序的思想
你的題目上說的是原始數據構成的初始堆
7 3 5 9 1 12 實際上是這樣的
7
3 5
9 1 12
5和12比較不變,9,1和3比較調換1和3的位置1,5和7比較調換1和7的位置則變成這樣
1
7 5
9 3 12
還不滿足小根堆繼續比較9,3和7比較替換3和7的位置3,5和1比較不用換
1
3 5
9 7 12
滿足小根堆了,所以初始堆為1,3,5,9,7,12(選B)
還不懂的話這里有個動態模擬過程
http://student.zjzk.cn/course_ware/data_structure/web/flashhtml/ipaixu.htm
7. 堆排序採用什麼存儲方式
完全二叉樹
8. 堆排序適用於什麼結構
堆排序(英語:Heapsort)是指利用堆這種數據結構所設計的一種排序演算法。堆積是一個近似完全二叉樹的結構,並同時滿足堆積的性質:即子結點的鍵值或索引總是小於(或者大於)它的父節點