當前位置:首頁 » 服務存儲 » 雙向聯想存儲器BAM
擴展閱讀
webinf下怎麼引入js 2023-08-31 21:54:13
堡壘機怎麼打開web 2023-08-31 21:54:11

雙向聯想存儲器BAM

發布時間: 2022-09-13 03:02:47

A. 手機裡面的BAM空間是什麼意思

樓主說的是RAM把?格式化手機後 基本就會解決樓主的這個問題 關於智能手機ROM和RAM的區別 存儲器分為隨機存儲器(RAM)和只讀存儲器(ROM)兩種。其中ROM通常用來固化存儲一些生產廠家寫入的程序或數據,用於啟動電腦和控制電腦的工作方式。而RAM則用來存取各種動態的輸入輸出數據、中間計算結果以及與外部存儲器交換的數據和暫存數據。設備斷電後,RAM中存儲的數據就會丟失。 對於手機而言 運行游戲、程序速度快慢看的是RAM,也就是動態內存,不是看ROM。ROM是靜態空間,用來存儲東西的,相當於手機的Z盤。RAM和ROM就好比是電腦的內存和硬碟。C盤准確的來講也不應該叫ROM只讀存儲器。C盤應該叫FLASH,因為C盤是可擦寫的,而FLASH的大小並不影響運行速度。

B. 人工神經網路,人工神經網路是什麼意思

一、 人工神經網路的概念
人工神經網路(Artificial Neural Network,ANN)簡稱神經網路(NN),是基於生物學中神經網路的基本原理,在理解和抽象了人腦結構和外界刺激響應機制後,以網路拓撲知識為理論基礎,模擬人腦的神經系統對復雜信息的處理機制的一種數學模型。該模型以並行分布的處理能力、高容錯性、智能化和自學習等能力為特徵,將信息的加工和存儲結合在一起,以其獨特的知識表示方式和智能化的自適應學習能力,引起各學科領域的關注。它實際上是一個有大量簡單元件相互連接而成的復雜網路,具有高度的非線性,能夠進行復雜的邏輯操作和非線性關系實現的系統。
神經網路是一種運算模型,由大量的節點(或稱神經元)之間相互聯接構成。每個節點代表一種特定的輸出函數,稱為激活函數(activation function)。每兩個節點間的連接都代表一個對於通過該連接信號的加權值,稱之為權重(weight),神經網路就是通過這種方式來模擬人類的記憶。網路的輸出則取決於網路的結構、網路的連接方式、權重和激活函數。而網路自身通常都是對自然界某種演算法或者函數的逼近,也可能是對一種邏輯策略的表達。神經網路的構築理念是受到生物的神經網路運作啟發而產生的。人工神經網路則是把對生物神經網路的認識與數學統計模型相結合,藉助數學統計工具來實現。另一方面在人工智慧學的人工感知領域,我們通過數學統計學的方法,使神經網路能夠具備類似於人的決定能力和簡單的判斷能力,這種方法是對傳統邏輯學演算的進一步延伸。
人工神經網路中,神經元處理單元可表示不同的對象,例如特徵、字母、概念,或者一些有意義的抽象模式。網路中處理單元的類型分為三類:輸入單元、輸出單元和隱單元。輸入單元接受外部世界的信號與數據;輸出單元實現系統處理結果的輸出;隱單元是處在輸入和輸出單元之間,不能由系統外部觀察的單元。神經元間的連接權值反映了單元間的連接強度,信息的表示和處理體現在網路處理單元的連接關系中。人工神經網路是一種非程序化、適應性、大腦風格的信息處理,其本質是通過網路的變換和動力學行為得到一種並行分布式的信息處理功能,並在不同程度和層次上模仿人腦神經系統的信息處理功能。
神經網路,是一種應用類似於大腦神經突觸連接結構進行信息處理的數學模型,它是在人類對自身大腦組織結合和思維機制的認識理解基礎之上模擬出來的,它是根植於神經科學、數學、思維科學、人工智慧、統計學、物理學、計算機科學以及工程科學的一門技術。
二、 人工神經網路的發展
神經網路的發展有悠久的歷史。其發展過程大致可以概括為如下4個階段。
1. 第一階段----啟蒙時期
(1)、M-P神經網路模型:20世紀40年代,人們就開始了對神經網路的研究。1943 年,美國心理學家麥克洛奇(Mcculloch)和數學家皮茲(Pitts)提出了M-P模型,此模型比較簡單,但是意義重大。在模型中,通過把神經元看作個功能邏輯器件來實現演算法,從此開創了神經網路模型的理論研究。
(2)、Hebb規則:1949 年,心理學家赫布(Hebb)出版了《The Organization of Behavior》(行為組織學),他在書中提出了突觸連接強度可變的假設。這個假設認為學習過程最終發生在神經元之間的突觸部位,突觸的連接強度隨之突觸前後神經元的活動而變化。這一假設發展成為後來神經網路中非常著名的Hebb規則。這一法則告訴人們,神經元之間突觸的聯系強度是可變的,這種可變性是學習和記憶的基礎。Hebb法則為構造有學習功能的神經網路模型奠定了基礎。
(3)、感知器模型:1957 年,羅森勃拉特(Rosenblatt)以M-P 模型為基礎,提出了感知器(Perceptron)模型。感知器模型具有現代神經網路的基本原則,並且它的結構非常符合神經生理學。這是一個具有連續可調權值矢量的MP神經網路模型,經過訓練可以達到對一定的輸入矢量模式進行分類和識別的目的,它雖然比較簡單,卻是第一個真正意義上的神經網路。Rosenblatt 證明了兩層感知器能夠對輸入進行分類,他還提出了帶隱層處理元件的三層感知器這一重要的研究方向。Rosenblatt 的神經網路模型包含了一些現代神經計算機的基本原理,從而形成神經網路方法和技術的重大突破。
(4)、ADALINE網路模型: 1959年,美國著名工程師威德羅(B.Widrow)和霍夫(M.Hoff)等人提出了自適應線性元件(Adaptive linear element,簡稱Adaline)和Widrow-Hoff學習規則(又稱最小均方差演算法或稱δ規則)的神經網路訓練方法,並將其應用於實際工程,成為第一個用於解決實際問題的人工神經網路,促進了神經網路的研究應用和發展。ADALINE網路模型是一種連續取值的自適應線性神經元網路模型,可以用於自適應系統。
2. 第二階段----低潮時期
人工智慧的創始人之一Minsky和Papert對以感知器為代表的網路系統的功能及局限性從數學上做了深入研究,於1969年發表了轟動一時《Perceptrons》一書,指出簡單的線性感知器的功能是有限的,它無法解決線性不可分的兩類樣本的分類問題,如簡單的線性感知器不可能實現「異或」的邏輯關系等。這一論斷給當時人工神經元網路的研究帶來沉重的打擊。開始了神經網路發展史上長達10年的低潮期。
(1)、自組織神經網路SOM模型:1972年,芬蘭的KohonenT.教授,提出了自組織神經網路SOM(Self-Organizing feature map)。後來的神經網路主要是根據KohonenT.的工作來實現的。SOM網路是一類無導師學習網路,主要用於模式識別﹑語音識別及分類問題。它採用一種「勝者為王」的競爭學習演算法,與先前提出的感知器有很大的不同,同時它的學習訓練方式是無指導訓練,是一種自組織網路。這種學習訓練方式往往是在不知道有哪些分類類型存在時,用作提取分類信息的一種訓練。
(2)、自適應共振理論ART:1976年,美國Grossberg教授提出了著名的自適應共振理論ART(Adaptive Resonance Theory),其學習過程具有自組織和自穩定的特徵。
3. 第三階段----復興時期
(1)、Hopfield模型:1982年,美國物理學家霍普菲爾德(Hopfield)提出了一種離散神經網路,即離散Hopfield網路,從而有力地推動了神經網路的研究。在網路中,它首次將李雅普諾夫(Lyapunov)函數引入其中,後來的研究學者也將Lyapunov函數稱為能量函數。證明了網路的穩定性。1984年,Hopfield 又提出了一種連續神經網路,將網路中神經元的激活函數由離散型改為連續型。1985 年,Hopfield和Tank利用Hopfield神經網路解決了著名的旅行推銷商問題(Travelling Salesman Problem)。Hopfield神經網路是一組非線性微分方程。Hopfield的模型不僅對人工神經網路信息存儲和提取功能進行了非線性數學概括,提出了動力方程和學習方程,還對網路演算法提供了重要公式和參數,使人工神經網路的構造和學習有了理論指導,在Hopfield模型的影響下,大量學者又激發起研究神經網路的熱情,積極投身於這一學術領域中。因為Hopfield 神經網路在眾多方面具有巨大潛力,所以人們對神經網路的研究十分地重視,更多的人開始了研究神經網路,極大地推動了神經網路的發展。
(2)、Boltzmann機模型:1983年,Kirkpatrick等人認識到模擬退火演算法可用於NP完全組合優化問題的求解,這種模擬高溫物體退火過程來找尋全局最優解的方法最早由Metropli等人1953年提出的。1984年,Hinton與年輕學者Sejnowski等合作提出了大規模並行網路學習機,並明確提出隱單元的概念,這種學習機後來被稱為Boltzmann機。
Hinton和Sejnowsky利用統計物理學的感念和方法,首次提出的多層網路的學習演算法,稱為Boltzmann 機模型。
(3)、BP神經網路模型:1986年,儒默哈特(D.E.Ru melhart)等人在多層神經網路模型的基礎上,提出了多層神經網路權值修正的反向傳播學習演算法----BP演算法(Error Back-Propagation),解決了多層前向神經網路的學習問題,證明了多層神經網路具有很強的學習能力,它可以完成許多學習任務,解決許多實際問題。
(4)、並行分布處理理論:1986年,由Rumelhart和McCkekkand主編的《Parallel Distributed Processing:Exploration in the Microstructures of Cognition》,該書中,他們建立了並行分布處理理論,主要致力於認知的微觀研究,同時對具有非線性連續轉移函數的多層前饋網路的誤差反向傳播演算法即BP演算法進行了詳盡的分析,解決了長期以來沒有權值調整有效演算法的難題。可以求解感知機所不能解決的問題,回答了《Perceptrons》一書中關於神經網路局限性的問題,從實踐上證實了人工神經網路有很強的運算能力。
(5)、細胞神經網路模型:1988年,Chua和Yang提出了細胞神經網路(CNN)模型,它是一個細胞自動機特性的大規模非線性計算機模擬系統。Kosko建立了雙向聯想存儲模型(BAM),它具有非監督學習能力。
(6)、Darwinism模型:Edelman提出的Darwinism模型在90年代初產生了很大的影響,他建立了一種神經網路系統理論。
(7)、1988年,Linsker對感知機網路提出了新的自組織理論,並在Shanon資訊理論的基礎上形成了最大互信息理論,從而點燃了基於NN的信息應用理論的光芒。
(8)、1988年,Broomhead和Lowe用徑向基函數(Radialbasis function, RBF)提出分層網路的設計方法,從而將NN的設計與數值分析和線性適應濾波相掛鉤。
(9)、1991年,Haken把協同引入神經網路,在他的理論框架中,他認為,認知過程是自發的,並斷言模式識別過程即是模式形成過程。
(10)、1994年,廖曉昕關於細胞神經網路的數學理論與基礎的提出,帶來了這個領域新的進展。通過拓廣神經網路的激活函數類,給出了更一般的時滯細胞神經網路(DCNN)、Hopfield神經網路(HNN)、雙向聯想記憶網路(BAM)模型。
(11)、90年代初,Vapnik等提出了支持向量機(Supportvector machines, SVM)和VC(Vapnik-Chervonenkis)維數的概念。
經過多年的發展,已有上百種的神經網路模型被提出。

C. 自聯想存儲器求助

聯想存儲器是不按地址而按給定內容的特徵進行存取的存儲器。
聯想存儲器的特點是:
①除有存儲功能外,還具有信息處理功能。它能根據送來內容的特徵查找存儲單元。
②對各個存儲單元並行進行查找,因而能顯著提高查找速度。這些特點與人腦的「聯想」功能有所相似,因而被稱為聯想存儲器。

D. 高速緩沖存儲器

首先 這個詞語已經被事實上的淘汰了,現在的稱之為「緩存」 「cache memory」或者直接稱之為cache。

以下內容截取自:
蘇東庄:《計算機系統結構》,國防工業出版社,北京,1981年!!!

在計算機存儲系統的層次結構中,介於中央處理器和主存儲器之間的高速小容量存儲器。它和主存儲器一起構成一級的存儲器。高速緩沖存儲器和主存儲器之間信息的調度和傳送是由硬體自動進行的,程序員感覺不到高速緩沖存儲器的存在,因而它對程序員是透明的。

作用 在計算機技術發展過程中,主存儲器存取速度一直比中央處理器操作速度慢得多,使中央處理器的高速處理能力不能充分發揮,整個計算機系統的工作效率受到影響。有很多方法可用來緩和中央處理器和主存儲器之間速度不匹配的矛盾,如採用多個通用寄存器、多存儲體交叉存取等,在存儲層次上採用高速緩沖存儲器也是常用的方法之一。很多大、中型計算機以及新近的一些小型機、微型機也都採用高速緩沖存儲器。

高速緩沖存儲器的容量一般只有主存儲器的幾百分之一,但它的存取速度能與中央處理器相匹配。根據程序局部性原理,正在使用的主存儲器某一單元鄰近的那些單元將被用到的可能性很大。因而,當中央處理器存取主存儲器某一單元時,計算機硬體就自動地將包括該單元在內的那一組單元內容調入高速緩沖存儲器,中央處理器即將存取的主存儲器單元很可能就在剛剛調入到高速緩沖存儲器的那一組單元內。於是,中央處理器就可以直接對高速緩沖存儲器進行存取。在整個處理過程中,如果中央處理器絕大多數存取主存儲器的操作能為存取高速緩沖存儲器所代替,計算機系統處理速度就能顯著提高。

原理 高速緩沖存儲器通常由高速存儲器、聯想存儲器、替換邏輯電路和相應的控制線路組成(見圖)。在有高速緩沖存儲器的計算機系統中,中央處理器存取主存儲器的地址劃分為行號、列號和組內地址三個欄位。於是,主存儲器就在邏輯上劃分為若干行;每行劃分為若乾的存儲單元組;每組包含幾個或幾十個字。高速存儲器也相應地劃分為行和列的存儲單元組。二者的列數相同,組的大小也相同,但高速存儲器的行數卻比主存儲器的行數少得多。聯想存儲器用於地址聯想,有與高速存儲器相同行數和列數的存儲單元。當主存儲器某一列某一行存儲單元組調入高速存儲器同一列某一空著的存儲單元組時,與聯想存儲器對應位置的存儲單元就記錄調入的存儲單元組在主存儲器中的行號。當中央處理器存取主存儲器時,硬體首先自動對存取地址的列號欄位進行解碼,以便將聯想存儲器該列的全部行號與存取主存儲器地址的行號欄位進行比較:若有相同的,表明要存取的主存儲器單元已在高速存儲器中,稱為命中,硬體就將存取主存儲器的地址映射為高速存儲器的地址並執行存取操作;若都不相同,表明該單元不在高速存儲器中,稱為脫靶,硬體將執行存取主存儲器操作並自動將該單元所在的那一主存儲器單元組調入高速存儲器相同列中空著的存儲單元組中,同時將該組在主存儲器中的行號存入聯想存儲器對應位置的單元內。

當出現脫靶而高速存儲器對應列中沒有空的位置時,便淘汰該列中的某一組以騰出位置存放新調入的組,這稱為替換。確定替換的規則叫替換演算法,常用的替換演算法有:最近最少使用法(LRU)、先進先出法(FIFO)和隨機法(RAND)等。替換邏輯電路就是執行這個功能的。另外,當執行寫主存儲器操作時,為保持主存儲器和高速存儲器內容的一致性,對命中和脫靶須分別處理:①寫操作命中時,可採用寫直達法(即同時寫入主存儲器和高速存儲器)或寫回法(即只寫入高速存儲器並標記該組修改過。淘汰該組時須將內容寫回主存儲器);②寫操作脫靶時,可採用寫分配法(即寫入注存儲器並將該組調入高速存儲器)或寫不分配法(即只寫入主存儲器但不將該組調入高速存儲器)。

高速緩沖存儲器的性能常用命中率來衡量。影響命中率的因素是高速存儲器的容量、存儲單元組的大小、組數多少、地址聯想比較方法、替換演算法、寫操作處理方法和程序特性等。

採用高速緩沖存儲器技術的計算機已相當普遍。有的計算機還採用多個高速緩沖存儲器,如系統高速緩沖存儲器、指令高速緩沖存儲器和地址變換高速緩沖存儲器等,以提高系統性能。隨著主存儲器容量不斷增大,高速緩沖存儲器的容量也越來越大。

E. 聯想存儲器的組成

圖為聯想存儲器的組成。聯想存儲體中的每個存儲單元都含有存儲、比較、 讀寫、控制等電路。查找變數被存放在比較數寄存器中。屏蔽寄存器用來屏蔽比較數寄存器的部分內容,而將未屏蔽部分作為查找變數送入聯想存儲體。查找時,每個存儲單元將它的內容與送來的查找變數比較。如果相等,則響應寄存器中的對應位被置1。如不相等,則置0。這樣,查找結果就被存入響應寄存器中。滿足查找要求的存儲單元稱為響應單元。查找是並行進行的,因而響應單元可能不止一個,這稱為多重響應。這時,如要寫入信息,則可將信息先送入比較數寄存器,並經與屏蔽寄存器配合再送至聯想存儲體,並行寫入這些響應單元。有時也可根據單元的地址寫入信息。如要讀出信息,則必須將這些單元逐一分解,確定地址順序讀出,這稱為多重響應分解,由多重響應分解器完成。字選擇寄存器用來選擇參加查找操作的存儲單元,起字間屏蔽的作用。「比較」是聯想存儲器最基本的邏輯操作,對於給定的查找變數能完成多種比較操作。例如:全等、不等;小於、大於;不大於、不小於;僅大於、僅小於;區間內、區間外和最大值、最小值等。這些操作可在全等比較的基礎上通過相應的演算法來實現,也可以在存儲單元內增加相應的邏輯線路來承擔。

F. 配置高速緩沖存儲器是為了解決

配置高速緩沖存儲器是為了解決CPU與內存之間速度不匹配的問題。高速緩沖存儲器存在於主存與CPU之間的一級存儲器, 由靜態存儲晶元(SRAM)組成,容量比較小但速度比主存高得多, 接近於CPU的速度。

在計算機存儲系統的層次結構中,介於中央處理器和主存儲器之間的高速小容量存儲器。它和主存儲器一起構成一級的存儲器。高速緩沖存儲器和主存儲器之間信息的調度和傳送是由硬體自動進行的。高速緩沖存儲器最重要的技術指標是它的命中率。

(6)雙向聯想存儲器BAM擴展閱讀

高速緩沖存儲器通常由高速存儲器、聯想存儲器、替換邏輯電路和相應的控制線路組成。在有高速緩沖存儲器的計算機系統中,中央處理器存取主存儲器的地址劃分為行號、列號和組內地址三個欄位。

於是,主存儲器就在邏輯上劃分為若干行;每行劃分為若乾的存儲單元組;每組包含幾個或幾十個字。高速存儲器也相應地劃分為行和列的存儲單元組。二者的列數相同,組的大小也相同,但高速存儲器的行數卻比主存儲器的行數少得多。

聯想存儲器用於地址聯想,有與高速存儲器相同行數和列數的存儲單元。當主存儲器某一列某一行存儲單元組調入高速存儲器同一列某一空著的存儲單元組時,與聯想存儲器對應位置的存儲單元就記錄調入的存儲單元組在主存儲器中的行號。

當中央處理器存取主存儲器時,硬體首先自動對存取地址的列號欄位進行解碼,以便將聯想存儲器該列的全部行號與存取主存儲器地址的行號欄位進行比較:若有相同的,表明要存取的主存儲器單元已在高速存儲器中,稱為命中,硬體就將存取主存儲器的地址映射為高速存儲器的地址並執行存取操作。

G. 什麼叫聯想存儲器為什麼要引進聯想存儲器

聯想存儲器的特點是:①除有存儲功能外,還具有信息處理功能。它能根據送來內容的特徵查找存儲單元。②對各個存儲單元並行進行查找,因而能顯著提高查找速度。這些特點與人腦的「聯想」功能有所相似,因而被稱為聯想存儲器。
聯想存儲器用在大型資料庫的實時檢索和更新,以及通用計算機的虛擬存儲和控制系統等方面。
跟聯想公司沒有一毛錢關系

H. 聯想存儲的特點是

聯想存儲器的特點是

聯想存儲器的特點是:
①除有存儲功能外,還具有信息處理功能。它能根據送來內容的特徵查找存儲單元。
②對各個存儲單元並行進行查找,因而能顯著提高查找速度。這些特點與人腦的「聯想」功能有所相似,因而被稱為聯想存儲器。
存儲器中所存的信息可用地址和數值(內容)兩個參數描述。如要對兩個存儲單元中的內容作某種運算,並將結果存入其中一個單元,則選用按地址存取的存儲器比較適宜。如果根據某些內容特徵來查找存儲單元,則使用聯想存儲器能更快地得到結果。而且存儲空間的使用比較節省,修改記錄時所花費的系統開銷也較小。聯想存儲器用在大型資料庫的實時檢索和更新,以及通用計算機的虛擬存儲和控制系統等方面。
聯想存儲器的組成。聯想存儲體中的每個存儲單元都含有存儲、比較、讀寫、控制等電路。查找變數被存放在比較數寄存器中。屏蔽寄存器用來屏蔽比較數寄存器的部分內容,而將未屏蔽部分作為查找變數送入聯想存儲體。查找時,每個存儲單元將它的內容與送來的查找變數比較。如果相等,則響應寄存器中的對應位被置1。如不相等,則置0。這樣,查找結果就被存入響應寄存器中。滿足查找要求的存儲單元稱為響應單元。查找是並行進行的,因而響應單元可能不止一個,這稱為多重響應。這時,如要寫入信息,則可將信息先送入比較數寄存器,並經與屏蔽寄存器配合再送至聯想存儲體,並行寫入這些響應單元。有時也可根據單元的地址寫入信息。如要讀出信息,則必須將這些單元逐一分解,確定地址順序讀出,這稱為多重響應分解,由多重響應分解器完成。字選擇寄存器用來選擇參加查找操作的存儲單元,起字間屏蔽的作用。「比較」是聯想存儲器最基本的邏輯操作,對於給定的查找變數能完成多種比較操作。
例如:全等、不等;小於、大於;不大於、不小於;僅大於、僅小於;區間內、區間外和最大值、最小值等。這些操作可在全等比較的基礎上通過相應的演算法來實現,也可以在存儲單元內增加相應的邏輯線路來承擔。

I. 聯想存儲器的雙向聯想存儲器

雙向聯想存儲器模型,一組有限個向量對由一線性運算元建立起雙向聯想關系,此線性算於是一個網路的聯結權重矩陣。該權矩陣由最小二乘法決定。由權矩陣的解導出一特殊類型的Lyapunov矩陣方程。

J. 車牌識別系統的觸發方式

車牌識別系統有兩種觸發方式,一種是外設觸發,另一種是視頻觸發。
外設觸發工作方式是指採用線圈、紅外或其他檢測器檢測車輛通過信號,車牌識別系統接受到車輛觸發信號後,採集車輛圖像,自動識別車牌,以及進行後續處理。該方法的優點是觸發率高,性能穩定;缺點是需要切割地面鋪設線圈,施工量大。
視頻觸發方式是指車牌識別系統採用動態運動目標序列圖像分析處理技術,實時檢測車道上車輛移動狀況,發現車輛通過時捕捉車輛圖像,識別車牌照,並進行後續處理。視頻觸發方式不需藉助線圈、紅外或其他硬體車輛檢測器。該方法的優點是施工方便,不需要切割地面鋪設線圈,也不需要安裝車檢器等零部件,但其缺點也十分顯著,由於演算法的極限,該方案的觸發率與識別率較之外設觸發都要低很多。
1)間接法:指通過識別安裝在汽車上的IC卡或條形碼中所存儲的車牌的信息來識別車牌及相關信息。IC卡技術識別准確度高,運行可靠,可以全天候作業,但它整套裝置價格昂貴,硬體設備十分復雜,不適用於異地作業;條形碼技術具有識別速度快、准確度高、可靠性強以及成本較低等優點,但是對於掃描器要求很高。此外,二者都需要制定出全國統一的標准,並且無法核對車、條形碼是否相符,也是技術上存在的缺點,這給在短時間內推廣造成困難。
2)直接法:基於圖像的車牌識別技術屬於直接法,是一種無源型汽車牌照智能識別方法,能夠在無任何專用發送車牌信號的車載發射設備情況下,對運動狀態車輛或靜止狀態車輛的車牌號碼進行非接觸性信息採集並實時智能識別。與間接法識別系統相比,首先,這種系統節省了設備安置及大量資金,從而提高了經濟效益;其次,由於採用了先進的計算機應用技術,所以可提高識別速度,較好地解決實時性問題;再次,它是根據圖像進行識別,所以通過人的參與可以解決系統中的識別錯誤,而其他方法是難以與人交互的。
直接法一般有圖像處理技術,傳統模式識別技術及人工神經網路技術。
1)圖像處理技術:運用圖像處理技術解決汽車牌照識別的研究最早始於80年代,但國內外均只是就車牌識別中的某一個具體問題進行討論,並且通常僅採用簡單的圖像處理技術來解決,並沒有形成完整的系統體系,識別過程是使用工業電視攝像機拍下汽車的工前方圖像,然後交給計算機進行簡單的處理,並且最終仍需要人工干預,例如車輛牌照中省份漢字的識別問題,1985年有人利用常見的圖像處理技木方法提出漢字識別的分類是在抽取漢字特徵的基礎上進行的,根據漢字的投影直方圖選取浮動閉值,抽取漢字在豎直方向的峰值,利用樹形查表法進行漢字的粗分類;然後根據漢字在水平方向的投影直方圖,選取適當閉值,進行量化處理後,形成一個變長鏈碼,再用動態規劃法,求出與標准模式鏈碼的最小距離,實現細分米完成漢字省名的自動識別。
2)傳統模式識別技術。傳統模式識別技術指結構特徵法,統計特徵法等。90年代,由於計算機視覺技術的發展,開始出現汽車牌照識別的系統化研究。1990年AS.Johnson等運用計算機視覺技術和圖像處理技術實現了車輛牌照的自動識別系統。該系統分為圖像分割、特徵提取和模板構造、字元識別等三個部分。利用不同閩值對應的直方圖不同,經過大量統計實驗確定出車牌位置的圖像直方圖的閩值范圍,從而根據特定閩值對應的直方圖分割出車牌,再利用預先設置的標准字元模板進行模式匹配識別出字元。
3)人工神經網路技術。近幾年來,計算機及相關技術發達的一些國家開始探討用人工神經網路技術解決車牌自動識別問題,例如1994年M.M.M.FANHY等就成功地運用了BAM神經網路方法對車牌上的字元進行自動識別,BAM神經網路是由相同神經元構成的雙向聯想式單層網路,每一個字元模板對應著唯一個BAM矩陣,通過與車牌上的字元比較,識別出正確的車牌號碼。
這種採用BAM神經網路方法的缺點是無映解決識別系統存儲容量和處理速度相矛盾的問題。