⑴ 氫氣的儲存方法有哪些
保存氫氣方法很多,但是高效的儲氫方法沒有
主要方法有:液化儲氫(成本太高,而且需要很高的能量維持其液化);壓縮儲氫(重量密度和體積密度都很低);金屬氫化物儲氫(體積存儲密度較高,但是重量密度低),還有一個是現在正在研究的碳納米管吸附儲氫(已經證明在室溫和不到1bar(約一個大氣壓)的壓力下,單壁碳管可以吸附5%-10%,多壁碳納米管儲氫可達14%,但是這些報道都受到了質疑,原因是目前尚未建立一個世界上公認的檢測碳納米管儲氫的檢測標准)
目前根據理論推算和反復驗證,大家普遍認為可逆儲/放氫量在5%(質量密度百分比)左右,但是即使是只有5%也是迄今為止最好的儲氫材料!
這是我上納米材料課上老師的筆記,打得好累...
⑵ 氫氣的儲存方法有哪些
保存氫氣方法很多,但是高效的儲氫方法沒有
主要方法有:液化儲氫(成本太高,而且需要很高的能量維持其液化);壓縮儲氫(重量密度和體積密度都很低);金屬氫化物儲氫(體積存儲密度較高,但是重量密度低),還有一個是現在正在研究的碳納米管吸附儲氫(已經證明在室溫和不到1bar(約一個大氣壓)的壓力下,單壁碳管可以吸附5%-10%,多壁碳納米管儲氫可達14%,但是這些報道都受到了質疑,原因是目前尚未建立一個世界上公認的檢測碳納米管儲氫的檢測標准)
目前根據理論推算和反復驗證,大家普遍認為可逆儲/放氫量在5%(質量密度百分比)左右,但是即使是只有5%也是迄今為止最好的儲氫材料!
這是我上納米材料課上老師的筆記,打得好累...
⑶ 用什麼材料可以儲存氫氣
1、合金儲氫材料
在一定溫度和氫氣壓力下,能可逆地大量吸收、儲存和釋放氫氣的金屬間化合物。
按儲氫合金金屬組成元素的數目劃分,可分為:二元系、三元系和多元系;按儲氫合金材料的主要金屬元素區分,可分為:稀土系、鎂系、鈦系、釩基固溶體、鋯系等;而組成儲氫合金的金屬可分為吸氫類(用A表示)和不吸氫類(用B表示),據此又可將儲氫合金分為:AB5型、AB2型、AB型、A2B型。
2、無機物及有機物儲氫材料
有機物儲氫技術始於 20 世紀 80 年代。有機物儲氫是藉助不飽和液體有機物與氫的一對可逆反應,即利用催化加氫和脫氫的可逆反應來實現。加氫反應實現氫的儲存(化學鍵合),脫氫反應實現氫的釋放。
3、納米儲氫材料
納米材料由於具有量子尺寸效應、小尺寸效應及表面效應,呈現出許多特有的物理、化學性質, 成為物理、化學、材料等學科研究的前沿領域。儲氫合金納米化後同樣出現了許多新的熱力學和動力學特性, 如活化性能明顯提高, 具有更高的氫擴散系數和優良的吸放氫動力學性能。
4、碳質材料儲氫
吸附儲氫具有安全可靠和儲存效率高等優點。而在吸附儲氫的材料中,碳質材料是最好的吸附劑,不僅對少數的氣體雜質不敏感,而且可反復使用。碳質儲氫材料主要是高比表面積活性炭(AC)、石墨納米纖維(GNF)、碳納米管(CNT)。
5、配位氫化物儲氫
配位氫化物儲氫是利用鹼金屬(Li、Na、K等)或鹼土金屬(Mg、Ca等)與第三主族元素可與氫形成配位氫化物的性質。其與金屬氫化物之間的主要區別在於吸氫過程中向離子或共價化合物的轉變,而金屬氫化物中的氫以原子狀態儲存於合金中。
6、水合物儲氫
氣體水合物,又稱孔穴形水合物,是一種類冰狀晶體,由水分子通過氫鍵形成的主體空穴在很弱的范德華力作用下包含客體分子組成。
(3)存儲液氫的材料擴展閱讀
氫氣可以用作燃料,具有下列特點:
優點
1、資源豐富。以水為原料,電解便可獲得。水資源在地球上相對主要燃料石油,煤也較豐富。
2、熱值高。氫燃燒的熱值高居各種燃料之冠,據測定,每千克氫燃燒放出的熱量為1.4*10^8J,為石油熱值的3倍多。因此,它貯存體積小,攜帶量大,行程遠。
3、氫為燃料最潔凈。氫的燃燒產物是水,對環境不產生任何污染。
缺點
氫氣要安全儲藏和運輸並不容易,它重量輕、難捉摸、擴散速度快,需低溫液化,會導致閥門堵塞並形成不必要的壓力。
⑷ 液氫儲罐可以用什麼材料
不知道或不專業,最好不要回答,會害人的。SA516 GR70隻能用於中低溫的容器,它是低溫碳鋼材料。液氫的溫度達-253度,儲罐材料要選擇奧氏體不銹鋼,有的選擇S32168即06Cr18Ni11Ti,成本高點。
⑸ 貯氫材料的原理
某些過渡金屬、合金和金屬間化合物,由於特殊的晶體結構,使氫原子容易進入其晶格間隙中並形成金屬氫化物,因此儲氫量很大,可貯存比其本身體積大1000~1300倍的氫,當加熱時氫就能從金屬中釋放出來。氫在金屬中的這種吸入和釋放,取決於金屬和氫的相平衡關系並受溫度、壓力和組分的制約。通常,貯氫材料的貯氫密度都很大,比標准狀態下的氫密度(5.4×1019at/cm3)高出幾個數量級,甚至比液氫的密度(4.2×1022at/cm3)還高。由於貯氫材料具有上述特性,用它儲運氫氣既輕便又安全,不僅無爆炸危險,還有可貯存時間長又無損耗等優點。氫,普遍被認為是人類最理想的清潔的高密度能源,燃燒時只產生水而沒有污染物,對環境保護有利。但要實現氫能源體系,氫的貯存問題首先要順利解決,因此研究貯氫材料特別重要。
已實用和研究發展中的貯氫材料主要有:①鎂系貯氫合金。主要有鎂鎳、鎂銅、鎂鐵、鎂鈦等合金。具有貯氫能力大(可達材料自重的5.1%~5.8%)、價廉等優點,缺點是易腐蝕所以壽命短,放氫時需要250℃以上高溫。②稀土系貯氫合金。主要是鑭鎳合金,其吸氫性好,容易活化,在40℃以上放氫速度好,但成本高。③鈦系貯氫合金。有鈦錳、鈦鉻、鈦鎳、鈦鐵、鈦鈮、鈦鋯、鈦銅及鈦錳氮、鈦錳鉻、鈦鋯鉻錳等合金。其成本低,吸氫量大,室溫下易活化,適於大量應用。④鋯系貯氫合金。有鋯鉻、鋯錳等二元合金和鋯鉻鐵錳、鋯鉻鐵鎳等多元合金。在高溫下(100℃以上)具有很好的貯氫特性,能大量、快速和高效率地吸收和釋放氫氣,同時具有較低的熱含量,適於在高溫下使用。 ⑤鐵系貯氫合金。主要有鐵鈦和鐵鈦錳等合金。其貯氫性能優良、價格低廉。
貯氫材料(hydrogen storage material)是在一般溫和條件下,能反復可逆地(通常在一萬次以上)吸入和放出氫的材料。又稱貯氫合金或儲氫金屬問化合物。這種材料在一定溫度和氫氣壓強下能迅速吸氫,適當加溫或減小氫氣壓強時又能放氫的材料。
貯氫材料多為易與氫起作用的某些過渡族金屬、合金或金屬間化合物。由於這些金屬材料具有特殊的晶體結構,使得氫原子容易進入其晶格的間隙中並與其形成金屬氫化物。其貯氫量可達金屬本身體積的1000~1300倍。氫與這些金屬的結合力很弱,一旦加熱和改變氫氣壓強,氫即從金屬中釋放出來。
貯氫材料用途
貯氫材料用途廣泛,除用於氫的存貯、運輸、分離、凈化和回收外,還可用於製作氫化物熱泵;以貯氫合金製造的鎳氫電池具有容量大、無毒安全和使用壽命長等優點;利用貯氫合金可製成海水淡化裝置和用於空間的超低溫製冷設備等。
特性
貯氫材料須具備以下基本特性:
1、在不太高的溫度下,貯氫量大,釋氫量也大。
2、氫化物的生成熱,一般在29~46kJ/mol(7~11Keal/克分子)氫之間。
3、成本低,原料來源廣。
4、經多次吸、放氫,性能不衰減,即使有衰減,經再生處理後也能恢復到原來水平。
5、有較平坦和較寬的平衡壓平台區,即大部分氫均可在一穩定的壓力范圍內放出。(6)容易活化,反應動力學性能好。(7)吸入、放出氫的壓力差小等。
功能
金屬貯氫材料是一種多功能的功能材料,下述功能,可供開發出多種高新技術產品。
釋放化學能
它所放出的氫可供直接燃燒產物,或供其他所需部門使用,如半導體生產,燃氫汽車,燃料電池發電,氫能電動車等。
熱功能
貯氫材料在吸、放氫過程中,同時有熱量的放出和吸入,利用這一吸、放熱的功能,可開發出熱泵、貯熱、回收熱等節能設備。
壓力和機械能
金屬貯氫材料吸、放氫時,有一定平衡壓,隨溫度的升高,其平衡壓將迅速升高。如某些貯氫材料貯氫後的平衡壓在100℃時達5~12MPa的壓力。
電化學功能
貯氫材料本身具有一定的電化學催化功能,同時,所釋放出的氫也極易轉化成電能,因此可利用此功能開發二次電池。
細化功能
貯氫材料在多次吸、放循環後,將自粉碎成細粉,利用這一功能可製成超細粉末,如制備超細合金和金屬粉末等,在技術上有很大潛力。
催化功能
貯氫材料在某些有機化學加氫以及合成氨工業中作為催化劑已顯示出有獨特作用,可望研製成低溫低壓合成氨催化劑。其他如分離氫的同位素功能,吸氣功能,凈化功能等尚有待進一步開發。
種類
主要有鈦鐵系,鑭鎳系,鎂鎳系和鈦鉻系等。
鈦鐵系
屬AB型,A代表鈦,B代表鐵、鈷、鎳等,最常見的為鈦鐵貯氫材料,貯氫量可達占材料自重的1.75%~1.89%。最初有一活化的難題,在高真空條件下,加熱到300~400℃才開始吸氫。中國科學家解決了這一難題,在室溫條件下一般真空度就可開始吸氫。此材料原料來源廣,成本低,有利於大量使用。德國研製的氫能汽車、美國研製的燃料電池電動車,就是以鈦鐵貯氫罐供氫的。
鑭鎳系
屬AB5型,A代表鑭及混合稀土系金屬,B代表鎳、鈷等,貯氫量為1.4%~1.5%,它可在室溫下活化,吸、放氫平衡壓為O.1~0.5MPa(20~30℃),放氫壓力穩定。為降低成本,改善性能,現已廣泛使用混合稀土金屬或富鑭混合稀土金屬取代鑭,也可以用鋁、鐵等取代部分鎳。
鎂鎳系
屬A2B型(。Mg2Ni),是一種較早研製成的貯氫材料,貯氫量可達3.4%~6.O%,但放氫溫度要求在250~320℃之間,限制了其應用。在貯存太陽能等技術中可發揮其優越性。
鈦鉻系
典型代表是Ticr2,屬AB2型,進一步發展為TiZrCrMnVFe,德國HWT公司有商品貯氫罐出售,他們已製成可貯存2000m3的大型貯氫罐,經改性後這類貯氫材料還可滿足不同用途的需要。
釩系
里鮑茨(libowitz)提出的體心立方型釩系貯氫材料,它的熵值高,可用於設計成高效熱泵,是新一類貯氫合金系列。
應用
貯氫材料應用很廣,而且仍在不斷發展中。
製作鎳氫電池
金屬氫化物可再充式電池(簡寫為Ni—MH電池)是貯氫材料應用取得最顯著實際成就的新領域,日本在1994年已生產AA型鎳氫電池2億支,我國在1994年生產AA型Ni—MH電池近100萬支,生產Ni—MH電池用的貯氫材料近100t。
貯氫922和凈化氫
貯氫材料貯氫後,其體積濃度大於液氫,幾種貯氫材料貯氫後的濃度(每立方厘米中的氫原子數×1022)分別為:液氫(20K)4.2,FeTiH 1.7 6.O,LaNi5H 6.7 6.1,ZrH27.3,TiH29.2同時,貯氫後一般只有O.5~2.0MPa的壓力,比高壓鋼瓶貯氫安全,比液氫也安全,成本低。貯氫材料貯氫後放出的氫,純度可達99.9999%。
製造熱泵
為回收各種熱能和貯熱。過去用貯氫材料二段式熱泵一次升溫,發展到三段式熱泵二次升溫,可使65~75℃的廢熱水產生蒸汽用於再發電。並可利用環境熱、太陽能熱源製成空調機和貯熱,或用於化工廠、冶金廠、發電廠的廢熱回收。
製造壓縮機和致冷器
用貯氫材料可製成靜態氫壓縮機和深冷致冷器。已製成的25K致冷器可用於空間探測、紅外探測系統中的冷源,它只須以水為介質和以太陽能作低級能源即可工作。還可以製成77K。液氮致冷器。利用貯氫材料製成的壓縮機可用於高壓氫裝瓶,還可利用太陽能製成海水淡化裝置等。
用於氫同位素分離
利用一種或幾種新型貯氫材料,可分離同位素氘、氚,以及貯存氘、氚,這在軍事工業中有很重要的作用。
用作催化劑
貯氫材料用作催化劑早有報導,如LaNis、TiFe等用於常溫低壓合成氨工藝以及某些有機化合物加氫工藝。
用作溫度感測器
利用上述貯氫材料產生壓力的功能以及不同貯氫材料的P—c一T曲線的不同數值,將一小型貯氫器上的壓力表改成溫度指示盤,經校正後即成溫度指示器。它體積小,不怕震動,美國SystemDonier公司生產的這種溫度指示器,廣泛用於各種噴氣飛機上。它還可以改製成火警報警器和窗戶自動開閉器等。
作機器人的動力裝置
也是利用貯氫材料的壓力和機械能功能,某些貯氫材料加熱到100℃即可達到6~13MPa的壓力,則可用於機器人動力系統的激發器、動力源。其特點是沒有旋轉部件反應靈敏,便於控制,反彈和振動小。
用作吸氣劑
由於某些貯氫合金有較強的吸氣能力,特別對氫、COz、CO、水分、甲烷均有一定吸附能力,因此可作為吸氣劑,以保持各種真空器件長時間的高真空,在技術上有重要作用。
發展電動車
電動汽車的關鍵技術是可移動式高效高密度蓄電池。可充式二次電池有多種多樣,其中能量密度最高、壽命最長、成本最低、功率密度最大者首推帶有高效供氫系統的質子交換膜式燃料電池,這種供氫系統就是由貯氫材料製成的貯氫罐。在21世紀初,這種清潔的電動車,將是城市交通的必然發展趨勢,需求量將是極大的。
發展趨勢
貯氫材料正向多元化,高容量,低成本方向發展,向復合材料過渡,正在採用新技術。例如有報道說經磁性技術攪拌貯氫量可大大提高。在改善貯氫材料的性能方面的技術還有: (1)表面微包覆技術;(2)表面化學處理技術;(3)薄膜技術,即將貯氫材料製成薄膜;(4)貯氫材料的漿料技術,即利用某些有機液體與貯氫材料混成均勻漿料,有利於改善貯氫材料的導熱性能及流動性。
其他制備貯氫材料的新工藝有採用鋁熱還原法及自蔓延高溫合成技術從鈦鐵礦、釩鐵礦直接還原成貯氫材料,還有回收和再生貯氫材料的技術等。
⑹ 液態氫如何儲存
雙層鋼瓶
還有儲氫材料 儲氫材料(hydrogen storage material)一類能可逆地吸收和釋放氫氣的材料.最早發現的是金屬鈀,1體積鈀能溶解幾百體積的氫氣,但鈀很貴,缺少實用價值.
⑺ 太空梭保存液氧和液氫的罐子由什麼材料製成
外儲箱由三個主要結構組成:液氧箱,中間層和液氫箱。推進劑箱都由鋁合金製成,附有必須的支撐或穩定框架。中間層採用鋁結構以附加穩定框架。所有鋁材都選用2195和2090合金,其中鋁2195是由洛克希德·馬丁和雷諾茲設計用於低溫儲存的鋁鋰合金;鋁2090則是一種商用鋁鋰合金。
⑻ 可以用水泥或木頭做一個儲存氫氣的容器嗎以及需要具備一些什麼要求
個人認為不可以。
木頭是纖維,水泥是顆粒,不能做到良好的氣密性。因此不能做成氫氣儲存容器。
當然,如果說在水泥或者木頭中加入薄膜類的,當我沒說。
PS:氫氣是已知的質量最輕的氣體。
一般儲存運輸都是用壓力容器,運輸液氫。
⑼ 氫氣是怎麼存貯的
傳統方法是液化,但這種方法成本較高,切不易使用,目前最前沿的方法是用一些貯氫材料,一類能可逆地吸收和釋放氫氣的材料。最早發現的是金屬鈀,1體積鈀能溶解幾百體積的氫氣,但鈀很貴,缺少實用價值。20世紀70年代以後,由於對氫能源的研究和開發日趨重要,首先要解決氫氣的安全貯存和運輸問題,儲氫材料范圍日益擴展至過渡金屬的合金。如鑭鎳金屬間化合物就具有可逆吸收和釋放氫氣的性質:
每克鑭鎳合金能貯存0.157升氫氣,略為加熱,就可以使氫氣重新釋放出來。LaNi5是鎳基合金,鐵基合金可用作儲氫材料的有TiFe,每克TiFe能吸收貯存0.18升氫氣。其他還有鎂基合金,如Mg2Cu、Mg2Ni等,都較便宜。
⑽ 儲氫金屬有哪些 為什麼可以大量儲存氫氣
液氫、氫氣的密度小,對儲氫來說是不利的因素.將氫氣壓縮到1.51×107Pa一個40L的鋼瓶中只能裝0.5kg;將氫氣壓縮為液氫,耗能差不多相當於其燃燒能的1/3~1/4.不僅耗能高,而且不安全.此時,高壓鋼瓶的爆炸威力相當於一顆重磅炸彈.當年裝液氫的貯罐車首次在美國公路上行駛時,前後都用紅色吉普車來「保駕」.因此,對於一種廣泛使用的燃料來說,必須尋找一種更為理想的固態儲運方法.
金屬儲氫法我們知道,固體金屬表面性質與它的體相性質是不同的.體相內的原子四周都有另外的原子包圍著,而表面上的原子至少有一側是空著的,這樣就產生了一個向內拉的剩餘力場,使金屬固體表面有一種表面能(見圖2)[8].這種剩餘力場能對固體表面的氣體分子產生吸引力,以降低固體表面能,使體系趨於較為穩定.所謂金屬儲氫法指某些金屬或合金,例如礬V、鈮Nb、鈦Ti、鎂Mg、鑭La、鋯Zr等,因其表面的催化或活性作用能將氫氣分子分解為氫原子而進入金屬點陣內部.這一現象是60年代末由荷蘭科學家首次發現的.在固態金屬中,金屬與氫通過化合鍵而結合,形成了金屬氫化物.如VH2、NbH2、TiH2、MgH2等.但近年來發現某些合金氫化物比較理想,通常能在室溫下使用.這類合金氫化物一般至少含一種與氫親和力強的元素和一種親和力略弱的元素,如二元合金氫化物LaNi5、TiFeH1·9,三、四元合金氫化物TiFe0·85Mn0·15H1·9TiFe0·8Ni0·15V0·05H1·6等金屬儲氫好比是海綿吸水一般,根據需要可逆地加氫和脫氫: