Ⅰ 光存儲器和光碟存儲器是一個意思么
不是。光存儲器是指用光學方法從光存儲媒體上讀取和存儲數據的一種設備,是指光碟機、全息存儲器、光帶機和光卡機等,而光碟儲存器則指的是光存儲器中的光碟儲存。
Ⅱ 光存儲器,什麼是光存儲器,光存儲器介紹
光纖存儲系統一般是指伺服器與存儲(盤櫃)之間的i/o是用光纖傳輸。
光纖存儲系統,目前市場上可分為兩種,純光纖和半光纖。
純光纖就是指控制器的前端主機介面和內部磁碟介面都是光纖的。
半光纖就是控制器的前端主機介面是光纖的,內部磁碟是其它介面。
Ⅲ 什麼是光交換機
光交換機,可以進行光信號的數據交換的設備。
隨著通信網路逐漸向全光平台發展,網路的優化、路由、保護和自愈功能在光領域中就變得越來越重要了。光交換機能夠保證網路的可靠性和提供靈活的信號路由平台。盡管現有的通信系統都採用電路交換,但未來的全光網路卻需要由純光交換機來完成信號路由功能以實現網路的高速率和協議透明性。
光交換的傳統應用:
通信網路中的光交換機的一個基本功能就是在光纖斷裂或轉發器發生故障時能自現代的大多數光纖網路都有兩條以上的光纖路由連到關鍵的節點。通過光交換機,光信號能方便地避開出故障的光纖或轉發器,重新選擇到達目的地的有效路由。但是信號以何種速率重新選擇路由對避免信息丟失是十分重要的,在高速電信系統中交換速率尤其重要。
光交換機的另一個傳統應用是網路監控。在遠端光纖測試點上,可使用一個1×N交換機將多條光纖連接到一個光時域反射計(OTDR),對光纖鏈路進行監控。使用交換機和OTDR可准確定位每一條光纖鏈路上的故障。在實際的傳送網路中,交換機還允許用戶取出信號或插入一個網路分析儀來進行實時監控而不會干擾網路數據傳輸。
光交換機通常也可用於光纖器件的現場測試。舉例來說,一個多通道交換機是在線測試光纖器件的有力工具。通過監視每一個對應一特定測試參數的交換機通道,可以不間斷地測試多個部件。
最近,光交換機還開始被應用於光纖感測器網路中。
盡管當前有許多種商用光交換機,但它們的光電和光機械模型都彼此十分相似。光電交換機內包含帶有光電晶體材料(諸如鋰鈮)的波導。交換機通常在輸入輸出端各有兩個波導,波導之間有兩條波導通路,這就構成了Mach-Zehnder干涉結構。這種結構可以實現1×2和2×2的交換配置。兩條通路之間的相位差由施加在通路上的電壓來控制。當通路上的驅動電壓改變兩通路之間的相位差時,利用干涉效應就可將信號送到目的輸出端。
最近,採用鋇鈦材料的波導交換機已經開發成功,這種交換機使用了一種分子束取相附生的技術。與鋰鈮交換機相比,這種新的交換機使用了非常少的驅動電能。
光電交換機的主要優點就是交換速度較快,可達到納秒級。然而,這類交換機的介入損耗、依極化損耗和串音都比較嚴重,它們對電漂移較敏感,通常需要較高的工作電壓。這樣,較高的生產成本就限制了光電交換機在商業上的廣泛應用。
光機械交換機依賴於成熟的光技術,是目前最常見的交換機。它的操作原理十分簡單,在交換機中,通過移動光纖終端或棱鏡來將光線引導或反射到輸出光纖,這樣就實現了輸入光信號的機械交換。光機械交換機只能實現毫秒級的交換速度,但由於它的成本較低,設計簡單和光性能較好而得到了廣泛的應用。
除了傳統的應用外,光交換機還將在新興的多通路、可重新配置的光子網路中發揮越來越重要的作用。
Ⅳ 光存儲器的光存儲器的特點
最常見的光碟(CD)能在單面上存儲超過60分種的不可刪除的音頻信息。光存儲器的製造成本低,其技術的成功認為是計算機數據存儲技術上的一次革命。
光存儲器用激光讀取存儲在媒質中的數據.凹面表示1,凸面表示0。因為需要機械電氣部件,所以光存儲器單元比起半導體存儲來讀寫速度慢,體積大,但它們比較便宜而且存儲容量大。
Ⅳ 計算機組成原理(三)存儲系統
輔存中的數據要調入主存後才能被CPU訪問
按存儲介質,存儲器可分為磁表面存儲器(磁碟、磁帶)、磁心存儲器半導體存儲器(MOS型存儲器、雙極型存儲器)和光存儲器(光碟)。
隨機存取存儲器(RAM):讀寫任何一個存儲單元所需時間都相同,與存儲單元所在的物理位置無關,如內存條等
順序存取存儲器(SAM):讀寫一個存儲單元所需時間取決於存儲單元所在的物理位置,如磁碟等
直接存取存儲器(DAM):既有隨機存取特性,也有順序存取特性。先直接選取信息所在區域,然後按順序方式存取。如硬碟等
相聯存儲器,即可以按內容訪問的存儲器(CAM)可以按照內容檢索到存儲位置進行讀寫,「快表」就是一種相聯存儲器
讀寫存儲器—即可讀、也可寫(如:磁碟、內存、Cache)
只讀存儲器—只能讀,不能寫(如:實體音樂專輯通常採用CD-ROM,實體電影採用藍光光碟,BIOS通常寫在ROM中)
斷電後,存儲信息消失的存儲器——易失性存儲器(主存、Cache)
斷電後,存儲信息依然保持的存儲器——非易失性存儲器(磁碟、光碟)
信息讀出後,原存儲信息被破壞——破壞性讀出(如DRAM晶元,讀出數據後要進行重寫)
信息讀出後,原存儲信息不被破壞——非破壞性讀出(如SRAM晶元、磁碟、光碟)
存儲器晶元的基本電路如下
封裝後如下圖所示
圖中的每條線都會對應一個金屬引腳,另外還有供電引腳、接地引腳,故可以由此求引腳數目
n位地址對應2 n 個存儲單元
假如有8k×8位的存儲晶元,即
現代計算機通常按位元組編址,即每個位元組對應一個地址
但也支持按位元組定址、按字定址、按半字定址、按雙字定址
(Dynamic Random Access Memory,DRAM)即動態RAM,使用柵極電容存儲信息
(Static Random Access Memory,SRAM)即靜態RAM,使用雙穩態觸發器存儲信息
DRAM用於主存、SRAM用於Cache,兩者都屬於易失性存儲器
簡單模型下需要有 根選通線,而行列地址下僅需 根選通線
ROM晶元具有非易失性,斷電後數據不會丟失
主板上的BIOS晶元(ROM),存儲了「自舉裝入程序」,負責引導裝入操作系統(開機)。邏輯上,主存由 輔存RAM+ROM組成,且二者常統一編址
位擴展的連接方式是將多個存儲晶元的地址端、片選端和讀寫控制端相應並聯,數據端分別引出。
字擴展是指增加存儲器中字的數量,而位數不變。字擴展將晶元的地址線、數據線、讀寫控制線相應並聯,而由片選信號來區分各晶元的地址范圍。
實際上,存儲器往往需要同時擴充字和位。字位同時擴展是指既增加存儲字的數量,又增加存儲字長。
兩個埠對同一主存操作有以下4種情況:
當出現(3)(4)時,置「忙」信號為0,由判斷邏輯決定暫時關閉一個埠(即被延時),未被關閉的埠正常訪問,被關閉的埠延長一個很短的時間段後再訪問。
多體並行存儲器由多體模塊組成。每個模塊都有相同的容量和存取速度,各模塊都有獨立的讀寫控制電路、地址寄存器和數據寄存器。它們既能並行工作,又能交義工作。多體並行存儲器分為高位交叉編址(順序方式)和低位交叉編址(交叉方式)兩種.
①高位交叉編址
②低位交叉編址
採用「流水線」的方式並行存取(宏觀上並行,微觀上串列),連續取n個存儲字耗時可縮短為
宏觀上,一個存儲周期內,m體交叉存儲器可以提供的數據量為單個模塊的m倍。存取周期為T,存取時間/匯流排傳輸周期為r,為了使流水線不間斷,應保證模塊數
單體多字系統的特點是存儲器中只有一個存儲體,每個存儲單元存儲m個字,匯流排寬度也為m個字。一次並行讀出m個字,地址必須順序排列並處於同一存儲單元。
缺點:每次只能同時取m個字,不能單獨取其中某個字;指令和數據在主存內必須是連續存放的
為便於Cache 和主存之間交換信息,Cache 和主存都被劃分為相等的塊,Cache 塊又稱Cache 行,每塊由若干位元組組成。塊的長度稱為塊長(Cache 行長)。由於Cache 的容量遠小於主存的容盤,所以Cache中的塊數要遠少於主存中的塊數,它僅保存主存中最活躍的若干塊的副本。因此 Cache 按照某種策略,預測CPU在未來一段時間內欲訪存的數據,將其裝入Cache.
將某些主存塊復制到Cache中,緩和CPU與主存之間的速度矛盾
CPU欲訪問的信息已在Cache中的比率稱為命中率H。先訪問Cache,若Cache未命中再訪問主存,系統的平均訪問時間t 為
同時訪問Cache和主存,若Cache命中則立即停止訪問主存系統的平均訪問時間t 為
空間局部性:在最近的未來要用到的信息(指令和數據),很可能與現在正在使用的信息在存儲空間上是鄰近的
時間局部性:在最近的未來要用到的信息,很可能是現在正在使用的信息
基於局部性原理,不難想到,可以把CPU目前訪問的地址「周圍」的部分數據放到Cache中
直接映射方式不需要考慮替換演算法,僅全相聯映射和組相聯映射需要考慮
①隨機演算法(RAND):若Cache已滿,則隨機選擇一塊替換。實現簡單,但完全沒考慮局部性原理,命中率低,實際效果很不穩定
②先進先出演算法(FIFO):若Cache已滿,則替換最先被調入Cache的塊。實現簡單,依然沒考慮局部性原理
③近期最少使用演算法(LRU):為每一個Cache塊設置一個「計數器」,用於記錄每個Cache塊已經有多久沒被訪問了。當Cache滿後替換「計數器」最大的.基於「局部性原理」,LRU演算法的實際運行效果優秀,Cache命中率高。
④最不經常使用演算法(LFU):為每一個Cache塊設置一個「計數器」,用於記錄每個Cache塊被訪問過幾次。當Cache滿後替換「計數器」最小的.並沒有很好地遵循局部性原理,因此實際運行效果不如LRU
現代計算機常採用多級Cache,各級Cache之間常採用「全寫法+非寫分配法」;Cache-主存之間常採用「寫回法+寫分配法」
寫回法(write-back):當CPU對Cache寫命中時,只修改Cache的內容,而不立即寫入主存,只有當此塊被換出時才寫回主存。減少了訪存次數,但存在數據不一致的隱患。
全寫法(寫直通法,write-through):當CPU對Cache寫命中時,必須把數據同時寫入Cache和主存,一般使用寫緩沖(write buffer)。使用寫緩沖,CPU寫的速度很快,若寫操作不頻繁,則效果很好。若寫操作很頻繁,可能會因為寫緩沖飽和而發生阻塞訪存次數增加,速度變慢,但更能保證數據一致性
寫分配法(write-allocate):當CPU對Cache寫不命中時,把主存中的塊調入Cache,在Cache中修改。通常搭配寫回法使用。
非寫分配法(not-write-allocate):當CPU對Cache寫不命中時只寫入主存,不調入Cache。搭配全寫法使用。
頁式存儲系統:一個程序(進程)在邏輯上被分為若干個大小相等的「頁面」, 「頁面」大小與「塊」的大小相同 。每個頁面可以離散地放入不同的主存塊中。CPU執行的機器指令中,使用的是「邏輯地址」,因此需要通「頁表」將邏輯地址轉為物理地址。頁表的作用:記錄了每個邏輯頁面存放在哪個主存塊中
邏輯地址(虛地址):程序員視角看到的地址
物理地址(實地址):實際在主存中的地址
快表是一種「相聯存儲器」,可以按內容尋訪,表中存儲的是頁表項的副本;Cache中存儲的是主存塊的副本
地址映射表中每一行都有對應的標記項
主存-輔存:實現虛擬存儲系統,解決了主存容量不夠的問題
Cache-主存:解決了主存與CPU速度不匹配的問題
Ⅵ 光存儲的分類有哪2種
只讀型和可重寫型光存儲。
光存儲器
光存儲器是由光碟驅動器和光碟片組成的光碟驅動系統,光存儲技術是一種通過光學的方法讀寫數據的一種技術,它的工作原理是改變存儲單元的某種性質的反射率,反射光極化方向,利用這種性質的改變來寫入存儲二進制數據.在讀取數據時,光檢測器檢測出光強和極化方向等的變化,從而讀出存儲在光碟上的數據.由於高能量激光束可以聚焦成約0.8μm的光束,並且激光的對准精度高,因此它比硬碟等其他存儲技術具有較高的存儲容量.
光存儲器的特點:
最常見的光碟(CD)能在單面上存儲超過60分鍾的不可刪除的音頻信息。光存儲器的製造成本低,其技術的成功認為是計算機數據存儲技術上的一次革命。
光存儲器用激光讀取存儲在媒質中的數據.凹面表示1,凸面表示0。因為需要機械電氣部件,所以光存儲器單元比起半導體存儲來讀寫速度慢,體積大,但它們比較便宜而且存儲容量大。
幾種常用的光存儲器:
常用的光碟系統有:CD(光碟),CD-ROM(光碟只讀存儲器),CD-R(可刻錄光碟),CD-RW(可重寫光碟),DVD(數字視盤),DVD-R(可刻錄DVD),DVD-RW(可重寫DVD)。
CD:存儲數字音頻信息的不可擦光碟,標標准系統採用12厘米大小,能記錄連續播放60分鍾以上的信息。
CD-ROM:是由音頻光碟(簡稱CD)發展而來的一種小型只讀存儲器,用於存儲計算機數據的不可擦只讀光碟.標准系統採用12厘米大小,能存儲大於550M位元組的容。
DVD數字化視頻盤:製作數字化的,壓縮的視頻信息以及其他大容量數字數據技術。
可擦光碟:使用光技術,但容易擦去和重復寫入的光碟,有3.25英寸和5.25英寸兩種,容量通常用650M位元組。
光存儲器主要應用在計算機中進行信息的存儲,已經是計算機用來存儲信息的一種不可缺少的器件了。
Ⅶ 光存儲器的幾種常用的光存儲器
常用的光碟系統有:CD(光碟),CD-ROM(光碟只讀存儲器),CD-R(可刻錄光碟),CD-RW(可重寫光碟),DVD(數字視盤),DVD-R(可刻錄DVD),DVD-RW(可重寫DVD)。
CD:存儲數字音頻信息的不可擦光碟,標標准系統採用12厘米大小,能記錄連續播放60分鍾以上的信息。
CD-ROM:是由音頻光碟(簡稱CD)發展而來的一種小型只讀存儲器,用於存儲計算機數據的不可擦只讀光碟.標准系統採用12厘米大小,能存儲大於550M位元組的容。
DVD數字化視頻盤:製作數字化的,壓縮的視頻信息以及其他大容量數字數據技術。
可擦光碟:使用光技術,但容易擦去和重復寫入的光碟,有3.25英寸和5.25英寸兩種,容量通常用650M位元組。
光存儲器主要應用在計算機中進行信息的存儲,已經是計算機用來存儲信息的一種不可缺少的器件了。
Ⅷ 光儲存設備包括哪些
也許乍聽到「光存儲設備」,很多人都不知道是什麼。其實就是平常所說的「光碟機」。 [1]
光存儲設主要可以歸為CD光碟機、DVD光碟機、CD刻錄機、DVD刻錄機、Combo。 光碟機雖然在1991年的時候就已經問世,但是發展顯得非常緩慢。1993年,第二代MPC規格問世,光碟機的速度已變成了雙倍速,傳輸率達到了300KB/S,平均搜尋時間為400ms。1995年夏,Multimdeia PC Working Group公布第三代規格標准,光碟機速度提高到四倍速,數據傳輸率為600KB/S,數據的平均時間不大於250ms。兼容光碟格式:CD-Audio、CD-Mode1/2、CD-ROM/XA、photo-CD、CD-R、Video-CD、CD-I等。再以後,光碟機提速也成為各家廠商技術發展的主要目標,速度從4倍速、8倍速,一直提高到48倍速 、52倍速不等。隨著技術的發展和成熟,光碟機的價格已經下降了一個可以接受的水平,當時間進化到97年左右的時候,光碟機已經開始普及開來了。雖然光碟的容量達到了640M的大小,但是人類的追求是永無止境的,人們渴望可以在碟片上面存儲更多的數據。在這種情況下,DVD及DVD光碟機也就問世了。開發之初,DVD的意義為Digital Video Disc(數字視頻光碟),只能存儲視頻、音頻信息。而當DVD擴展其功能之後,DVD不但可以存儲MPEG2的視頻、音頻信息,而且可以存儲計算機程序、文件數字信息,滿足人們對大存儲容量、高性能的存儲媒體的需求。這種集計算機技術、光學記錄技術以及影視技術為一體的媒介便成為Digital Versatile Disk(數字通用光碟)。我們談DVD,當然要說DVD聯盟這個官方組織,這一組織最初由Hitachi、JVC、Matsushita、Mitsubishi、Philips、Pioneer、Sony、Thomson、Time Warner 和Toshiba這十家公司於1995年9月發起形成,1997年5月,基於這一聯盟基礎上的一個國際性的開放性組織??「DVD論壇」宣告成立,這一組織已經吸引了超過200個的組織成員。這個組織的總目標是促進和發展DVD 形式,協調DVD規格和對DVD技術領域的公司發放許可。有專門的工作組著手於DVD技術不同方面的工作,並對一些規格制定國際標准。它們對於推動DVD標准和技術的發展起了不可估量的重要作用。如今,不少的規格已經成為國際標准。DVD的原理與光碟機大同小異,在可以讀取DVD光碟的時候也能讀取DVD光碟。一張DVD光碟的最小儲存能力達到了4.7GB。而隨著DVD技術的發展,單面雙層、雙目雙層技術等不斷開發出來,DVD可以存儲的數據容量也急速的增大。DVD吸引人們的不僅僅是數據儲存方面,而在影像方面,DVD影像可以提供比CD影像清晰好幾倍的效果,並且支持5.1聲道,相比CD的立體聲,DVD可以說是佔有絕對優勢。DVD在1997年開始進入市場,但是在很長一段時間內,由於高昂的價格和對PC處理能力的不低的要求使得DVD光碟機無法進入普通百姓的家裡。而這幾年DVD價格的大調整,使得越來越多的用戶選擇DVD來代替光碟機,DVD代替光碟機的潮流已經是無法抵擋了。而DVD的格式初期有:DVD-ROM(用於數據記錄,包括電腦應用的多媒體數據;)、DVD-Video(用於記錄家庭影音設備或者DVD-ROM驅動器的視頻信息。這種格式具有版權保護功能)、DVD-Audio(用戶記錄高品質的多音軌音頻),但是由於部分成員考慮到市場的問題,刻錄格式還沒有達到統一意見,使得DVD格式非常的多,包括:DVD-ROM、DVD-Video、DVD-Audio、DVD+RW、DVD-RW、DVD-R、DVD+R、DVD-VR。DVD標準的混亂局面已經不可避免地影響到了DVD的下一代標准。新一代DVD標准一直是世界家電業和IT業共同關注的焦點,世界電子企業為了統一下一代DVD標准而專門組建了DVD聯盟,但由於東芝和NEC的退出,以及台灣HD-DVD標準的提出,已經變得四分五裂。
Ⅸ 光存儲的類型
光學技術、激光技術、微電子技術、材料科學、細微加工技術、計算機與自動控制技術的發展。光存儲是由光碟表面的介質影響的,光碟上有凹凸不平的小坑,光照射到上面有不同的反射,再轉化為0、1的數字信號就成了光存儲。
當然光碟外面還有保護膜,一般看不出來,不過你能看出來有信息和沒有信息的地方。刻錄光碟也是這樣的原理,就是當刻錄的時候光比較強,燒出了不同的凹凸點。
存儲原理:
無論是CD光碟、DVD光碟等光存儲介質,採用的存儲方式都與軟盤、硬碟相同,是以二進制數據的形式來存儲信息。而要在這些光碟上面儲存數據,需要藉助激光把電腦轉換後的二進制數據用數據模式刻在扁平、具有反射能力的碟片上。
以上內容參考:網路——光存儲