❶ 求中山大學運籌學和隨機過程的試題!!
《運籌學典型題解析及自測試題》內容包括:按當前各高等學校《運籌學》通用教材的主要篇章分別給出內容要點、典型例題詳解、評注及練習題等。
--------------------------------------------------------------------------------
作者簡介
--------------------------------------------------------------------------------
目錄
第一部分 典型題解析
第一章 線性規劃與單純形法
一、內容提要
二、典型題解析
三、習題一
第二章 線性規劃的對偶問題及靈敏度分析
一、內容提要
二、典型題解析
三、習題二
第三章 運輸問題
一、內容提要
二、典型題解析
三、習題三
第四章 目標規劃
一、內容提要
二、典型題解析
三、習題四
第五章 整數規劃
一、內容提要
二、典型題解析
三、習題五
第六章 運態規劃及應用案例
一、內容提要
二、典型題解析
三、習題六
第七章 圖與網路分析
一、內容提要
二、典型題解析
三、習題七
第八章 關鍵路線法和計劃評審方法
一、內容提要
二、典型題解析
三、習題八
第九章 排隊論
一、內容提要
二、典型題解析
三、習題九
第十章 存儲論
一、內容提要
二、典型題解析
三、習題十
第十一章 矩陣對策
一、內容提要
二、典型題解析
三、習題十一
第十二章 決策論
一、內容提要
二、典型題解析
三、習題十二
第二部分 自測試題
自測試題一
自測試題二
自測試題三
自測試題四
自測試題五
自測試題六
自測試題七
第三部分 部分全國重點高校考研真題及答案
2002年西北工業大學研究生入學運籌學試題及答案
2001年西北工業大學研究生入學運籌學試題及答案
2000年西北工業大學研究生入學運籌學試題及答案
2000年東南大學研究生入學運籌學試題及答案
1998年上海交通大學研究生入學運籌學試題及答案
1997年哈爾濱工業大學研究生入學運籌學試題及答案
1994年復旦大學研究生入學運籌學試題及答案
❷ 運籌學的目錄:
第1章 微積分和概率論
1.1積分
1.2積分求導
1.3概率的基本法則
1.4貝葉斯法則
1.5隨機變數、均值、方差和協方差
1.5.1離散型隨機變數
1.5.2連續型隨機變數
1.5.3隨機變數的均值和方差
1.5.4獨立隨機變數
1.5.5兩個隨機變數的協方差
1.5.6隨機變數之和的均值、方差與協方差
1.6正態分布
1.6.1正態分布的重要性質
1.6.2利用標准化求正態概率
1.6.3利用Excel求正態概率
1.7z變換
1.8本章小結
1.8.1確定不定積分的公式
1.8.2對積分求導的萊布尼茲法則
1.8.3概率
1.8.4貝葉斯法則
1.8.5隨機變數、均值、方差和協方差
1.8.6正態分布的重要性質
1.8.7z變換
1.9復習題
第2章 不確定決策
2.1決策准則
2.1.1受支配動作
2.1.2悲觀准則
2.1.3樂觀准則
2.1.4遺憾准則
2.1.5預期值准則
2.2效用理論
2.2.1馮·諾依曼?摩根斯坦公理
2.2.2為什麼我們可以假設u(最壞結果)=0和u(最好結果)=1
2.2.3評估一個人的效用函數
2.2.4一個人的效用函數和他或她面對風險的態度之間的關系
2.2.5指數效用函數
2.3預期效用最大化的缺陷: 前景效用理論和架構效應
2.3.1前景效用理論
2.3.2架構
2.4決策樹
2.4.1將風險規避結合進決策樹分析
2.4.2樣本信息的預期值
2.4.3完善信息的預期值
2.5貝葉斯法則和決策樹
2.6多目標決策
2.6.1確定情況下的多屬性決策: 目標規劃
2.6.2多屬性效用函數
2.7解析分層進程
2.7.1獲得各個目標的權
2.7.2檢查一致性
2.7.3求目標選擇的分數
2.7.4在電子表格上實現AHP
2.8本章小結
2.8.1決策准則
2.8.2效用理論
2.8.3前景效用理論和架構
2.8.4決策樹
2.8.5貝葉斯法則和決策樹
2.8.6多目標決策
2.8.7AHP
2.9復習題
第3章 確定型EOQ存儲模型
3.1基本的存儲模型
3.1.1存儲模型所涉及的費用
3.1.2EOQ模型的假設
3.2基本的EOQ模型
3.2.1基本EOQ模型的假設
3.2.2基本EOQ模型的導出
3.2.3總費用對於訂購數量微小變化的靈敏度
3.2.4在以庫存的美元價值表示存儲費用時確定EOQ
3.2.5非零交付周期的影響
3.2.6基本EOQ模型的電子表格模板
3.2.7二冪訂購策略
3.3計算允許數量折扣時的最優訂購量
3.4連續速率的EOQ模型
3.5允許延期交貨的EOQ模型
3.6什麼時候使用EOQ模型
3.7多產品EOQ模型
3.8本章小結
3.8.1表示法
3.8.2基本EOQ模型
3.8.3數量折扣模型
3.8.4連續速率模型
3.8.5允許延期交貨的EOQ
3.9復習題
第4章 隨機型存儲模型
4.1單周期決策模型
4.2邊際分析的概念
4.3賣報人問題: 離散需求
4.4賣報人問題: 連續需求
4.5其他單周期模型
4.6包含不確定需求的EOQ: (r,q)和(s,S)模型
4.6.1確定再訂購點: 允許延期交貨的情況
4.6.2確定再訂購點: 脫銷情況
4.6.3連續檢查(r,q)策略
4.6.4連續檢查(s,S)策略
4.7具有不確定需求的EOQ: 確定安全庫存等級的服務等級法
4.7.1確定SLM1的再訂購點和安全庫存水平
4.7.2使用LINGO計算SLM1的再訂購點等級
4.7.3使用Excel計算正態損失函數
4.7.4確定SLM2的再訂購點和安全庫存水平
4.8(R,S)定期檢查策略
4.8.1確定R
4.8.2實現(R,S)系統
4.9ABC存儲分類系統
4.10交換曲線
4.10.1缺貨的交換曲線
4.10.2交換曲面
4.11本章小結
4.11.1單周期決策模型
4.11.2賣報人問題
4.11.3確定不確定需求的再訂購點和訂購量: 最小化年度預期費用
4.11.4確定再訂購點: 服務等級法
4.11.5(R,S)定期檢查策略
4.11.6ABC分類
4.11.7交換曲線
4.12復習題
第5章 馬爾可夫鏈
5.1什麼是隨機過程
5.2什麼是馬爾可夫鏈
5.3n步轉移概率
5.4馬爾可夫鏈中的狀態分類
5.5穩態概率和平均最先通過時間
5.5.1暫態分析
5.5.2穩態概率的直觀解釋
5.5.3穩態概率在決策中的用法
5.5.4平均最先通過時間
5.5.5在計算機上求解穩態概率和平均最先通過時間
5.6吸收鏈
5.7勞動力規劃模型
5.8本章小結
5.8.1n步轉移概率
5.8.2馬爾可夫鏈中的狀態分類
5.8.3穩態概率
5.8.4吸收鏈
5.8.5勞動力規劃模型
5.9復習題
第6章 確定性動態規劃
6.1兩個難題
6.2網路問題
6.2.1動態規劃的計算效率
6.2.2動態規劃應用的特徵
6.3存儲問題
6.4資源分配問題
6.4.1資源示例的網路表示
6.4.2廣義的資源分配問題
6.4.3使用動態規劃求解背包問題
6.4.4背包問題的網路表示
6.4.5背包問題的可供選擇的遞歸
6.4.6收費理論
6.5設備更新問題
6.5.1設備更新問題的網路表示
6.5.2可供選擇的遞歸
6.6表述動態規劃遞歸
6.6.1將資金的時間價值納入動態規劃表述中
6.6.2使用動態規劃的計算難點
6.6.3非求和遞歸
6.7Wagner?Whitin演算法和Silver?Meal啟發式演算法
6.7.1動態批量模型簡介
6.7.2Wagner?Whitin演算法的論述
6.7.3Silver?Meal啟發式演算法
6.8使用Excel求解動態規劃問題
6.8.1在電子表格上求解背包問題
6.8.2在電子表格上求解一般的資源分配問題
6.8.3在電子表格上求解庫存問題
6.9本章小結
6.9.1逆推
6.9.2動態批量模型的Wagner?Whitin演算法和Silver?Meal啟發式演算法
6.9.3計算時的注意事項
6.10復習題
第7章 隨機性動態規劃
7.1當前階段的費用不確定,而下一周期的狀態確定
7.2隨機性存儲模型
7.3如何最大化有利事件發生的概率
7.4隨機性動態規劃表述的更多示例
7.5馬爾可夫決策過程
7.5.1MDP的描述
7.5.2策略迭代
7.5.3線性規劃
7.5.4值迭代
7.5.5最大化每個周期的平均收益
7.6本章小結
7.6.1表述隨機性動態規劃問題(PDP)的關鍵
7.6.2最大化有利事件發生的概率
7.6.3馬爾可夫決策過程
7.6.4策略迭代
7.6.5線性規劃
7.6.6值迭代或連續近似值
7.7復習題
第8章 排隊論
8.1一些排隊術語
8.1.1輸入或到達過程
8.1.2輸出或者服務過程
8.1.3排隊規則
8.1.4到達者加入隊列的方式
8.2建立到達和服務過程的模型
8.2.1建立到達過程的模型
8.2.2建立服務過程的模型
8.2.3排隊系統的kendall?Lee符號表示法
8.2.4等待時間矛盾論
8.3生滅過程
8.3.1生滅過程的動作定理
8.3.2指數分布與生滅過程的關系
8.3.3生滅過程的穩態概率的推導
8.3.4求解生滅流量平衡方程
8.3.5使用電子表格計算穩態概率
8.4M/M/1/GD/∞/∞排隊系統和排隊公式L=λW
8.4.1穩態概率的推導
8.4.2L的推導
8.4.3Lq的推導
8.4.4Ls的推導
8.4.5排隊公式L=λW
8.4.6排隊優化模型
8.4.7使用電子表格計算M/M/1/GD/∞/∞排隊系統
8.5M/M/1/GD/c/∞排隊系統
8.6M/M/s/GD/∞/∞排隊系統
8.6.1使用電子表格計算M/M/s/GD/∞/∞排隊系統
8.6.2使用LINGO計算M/M/s/GD/∞/∞排隊系統
8.7M/G/∞/GD/∞/∞和GI/G/∞/GD/∞/∞模型
8.8M/G/1/GD/∞/∞排隊系統
8.9有限源模型: 機器維修模型
8.9.1使用電子表格計算機器維修問題
8.9.2使用LINGO計算機器維修模型
8.10串列指數分布隊列和開放式排隊網路
8.10.1開放式排隊網路
8.10.2數據通信網路的網路模型
8.11M/G/s/GD/s/∞系統(被阻擋客戶被清除)
8.11.1使用電子表格計算BCC模型
8.11.2使用LINGO計算BCC模型
8.12如何斷定到達時間間隔和服務時間服從指數分布
8.13閉合式排隊網路
8.14G/G/m排隊系統的近似求解法
8.15優先排隊模型
8.15.1非搶占式優先模型
8.15.2Mi/Gi/1/NPRP/∞/∞模型
8.15.3具有客戶等待成本的Mi/Gi/1/NPRP/∞/∞模型
8.15.4Mi/M/s/NPRP/∞/∞模型
8.15.5搶占式優先順序
8.16排隊系統的瞬變行為
8.17本章小結
8.17.1指數分布
8.17.2愛爾朗分布
8.17.3生滅過程
8.17.4排隊系統參數的表示法
8.17.5M/M/1/GD/∞/∞模型
8.17.6M/M/1/GD/c/∞模型
8.17.7M/M/s/GD/∞/∞模型
8.17.8M/G/∞/GD/∞/∞模型
8.17.9M/G/1/GD/∞/∞模型
8.17.10機器維修(M/M/R/GD/K/K)模型
8.17.11串列指數分布隊列
8.17.12M/G/s/GD/s/∞模型
8.17.13到達時間間隔或服務時間不服從指數分布的處理
8.17.14閉合式排隊網路
8.17.15G/G/m排隊系統的近似求解法
8.17.16排隊系統的瞬變行為
8.18復習題
第9章 模擬技術
9.1基本術語
9.2離散事件模擬示例
9.3隨機數和蒙特卡羅模擬
9.3.1隨機數生成器
9.3.2隨機數的計算機生成
9.4蒙特卡羅模擬示例
9.5使用連續隨機變數執行模擬
9.5.1逆轉方法
9.5.2接受?排除法
9.5.3正態分布的直接和卷積方法
9.6隨機模擬示例
9.7模擬中的統計分析
9.8模擬語言
9.9模擬過程
9.10本章小結
9.10.1模擬簡介
9.10.2模擬過程
9.10.3生成隨機變數
9.10.4模擬類型
9.11復習題
第10章 使用Process Model執行模擬
10.1模擬M/M/1排隊系統
10.2模擬M/M/2系統
10.3模擬串列系統
10.4模擬開放式排隊網路
10.5模擬愛爾朗服務時間
10.6Process Model的其他功能
10.7復習題
第11章 使用Excel插件@Risk執行模擬
11.1@Risk簡介: 賣報人問題
11.1.1求解預期利潤的置信區間
11.1.2使用RISKNORMAL函數建立正態需求模型
11.1.3求解目標和百分比
11.1.4用@Risk創建圖
11.1.5使用Report Settings選項
11.1.6使用@Risk統計
11.2建立新產品現金流模型
11.2.1三角形隨機變數
11.2.2Lilly模型
11.3項目計劃模型
11.4可靠性和保修建模
11.4.1機器使用壽命的分布
11.4.2機器組合的一般類型
11.4.3 估計保修費用
11.5RISKGENERAL函數
11.6RISKCUMULATIVE隨機變數
11.7RISKTRIGEN隨機變數
11.8基於點值預測創建分布
11.9預測大型公司的收入
11.9.1凈收入不相關的求解方法
11.9.2檢查相關性
11.10使用數據獲得新產品模擬的輸入
11.10.1模擬容量不確定性的方案
11.10.2用一個獨立變數模擬統計關系
11.11模擬和投標
11.12用@Risk玩擲雙骰子游戲
11.13模擬NBA總決賽
11.14復習題
第12章 使用Riskoptimizer在不確定情況下實現最優化
12.1Riskoptimizer介紹: 賣報人問題
12.1.1Settings圖標
12.1.2Start Optimization圖標
12.1.3Pause Optimization圖標
12.1.4Stop Optimization圖標
12.1.5Display Watcher圖標
12.1.6將Riskoptimizer用於日歷示例
12.2涉及歷史數據的賣報人問題
12.3不確定情況下的人員安排
12.4產品組合問題
12.5不確定情況下的農業計劃
12.6加工車間作業安排
12.7旅行推銷員問題
12.8復習題
第13章 期權定價和實際期權
13.1股票價格的對數正態模型
13.1.1均值的歷史數據估計和股票利潤的波動率
13.1.2求對數正態分布變數的均值和方差
13.1.3對數正態隨機變數的置信區間
13.2期權的定義
13.3實際期權的類型
13.3.1購買飛機的期權
13.3.2放棄期權
13.3.3其他實際期權機會
13.4用套利法評估期權
13.4.1在買入期權定價不當的情況下創造賺錢機器
13.4.2為什麼股票的上漲率不影響買入價格
13.5Black?Scholes期權定價公式
13.6估計波動率
13.7期權定價的風險中立法
13.7.1風險中立法背後的邏輯
13.7.2風險中立定價的示例
13.7.3證明美式買入期權決不應及早執行
13.8用Black?Scholes公式評估Internet啟動項目和Web TV
13.8.1評估Internet啟動項目
13.8.2評估「創新期權」: Web TV
13.9二項式模型和對數正態模型之間的關系
13.10使用二項樹給美式期權定價
13.10.1股票價格樹
13.10.2最優決策策略
13.10.3使用條件格式化描述最優執行策略
13.10.4靈敏度分析
13.10.5與放棄期權的關系
13.10.6計算及早執行邊界
13.10.7應當何時放棄
13.11通過模擬給歐式賣出和買入期權定價
13.12使用模擬評估實際期權
第14章 投資組合風險、優化和規避風險
14.1風險價值度量
14.2投資組合優化: Markowitz法
14.2.1隨機變數的和: 均值和方差
14.2.2矩陣乘法和投資組合優化
14.3使用情境法優化投資組合
14.3.1自舉未來的年度利潤
14.3.2使投資組合的標准差風險最小化
14.3.3使損失的概率最小化
14.3.4使Sharpe比率最大化
14.3.5使負面風險最小化
14.3.6極小極大方法
14.3.7最大化VAR
第15章 預測模型
15.1移動平均數預測法
15.2單指數平滑法
15.3Holt法: 涉及趨勢的指數平滑法
15.4Winter法: 涉及季節性的指數平滑法
15.4.1Winter法的初始化
15.4.2預測精確度
15.5Ad Hoc預測法
15.6簡單線性回歸
15.6.1適合情況
15.6.2預測精確度
15.6.3回歸中的t檢定
15.6.4簡單線性回歸模型下面的假設條件
15.6.5用Excel運行回歸
15.6.6用Excel獲得散點圖
15.7適當表現非線性關系
15.7.1用電子表格適當表現非線性關系
15.7.2使用Excel Trend Curve
15.8多重回歸
15.8.1預計βi的值
15.8.2重新分析擬合優度
15.8.3假設檢驗
15.8.4選擇最佳的回歸方程
15.8.5多重共線性
15.8.6啞變數
15.8.7解釋啞變數的系數
15.8.8倍增模型
15.8.9多重回歸中的異方差性和自相關
15.8.10在電子表格上實現多重回歸
15.9本章小結
15.9.1移動平均數預測法
15.9.2單指數平滑法
15.9.3Holt法
15.9.4Winter法
15.9.5簡單線性回歸
15.9.6適當表現非線性關系
15.9.7多重回歸
15.10復習題
第16章 布朗運動、隨機運算和隨機控制
16.1什麼是布朗運動
16.2推導作為隨機活動極限的布朗運動
16.3隨機微分方程
16.4Ito引理
16.5使用Ito引理推導Black?Scholes期權定價模型
16.6隨機控制簡介
16.7復習題
❸ 管理運籌學案例分析 高分求
你的那個表數據很混亂看不清
❹ 運籌學在生活中的應用案例
存款准備金率如何確定的問題,存貸差額如何確定以及盈虧平衡點的確定問題等。
運籌學,是現代管理學的一門重要專業基礎課。它是20世紀30年代初發展起來的一門新興學科,其主要目的是在決策時為管理人員提供科學依據,是實現有效管理、正確決策和現代化管理的重要方法之一。該學科應用於數學和形式科學的跨領域研究,利用統計學、數學模型和演算法等方法,去尋找復雜問題中的最佳或近似最佳的解答。
學科特點
運籌學已被廣泛應用於工商企業、軍事部門、民政事業等研究組織內的統籌協調問題,故其應用不受行業、部門之限制。
運籌學既對各種經營進行創造性的科學研究,又涉及到組織的實際管理問題,它具有很強的實踐性,最終應能向決策者提供建設性意見,並應收到實效。
它以整體最優為目標,從系統的觀點出發,力圖以整個系統最佳的方式來解決該系統各部門之間的利害沖突。對所研究的問題求出最優解,尋求最佳的行動方案,所以它也可看成是一門優化技術,提供的是解決各類問題的優化方法。
以上內容參考:網路-運籌學
❺ 哪位好心的朋友能提供一些運籌學在軍事上應用的案例不勝感激!
老師在運籌學課程中講過的,你沒有認真聽講。
運籌學在軍事上的運用如:原子彈的研製過程和戰斗機的設計製造流程都是功不可沒的。
如:1914年,蘭徹斯特完成了一篇關於戰斗的數學模型論文,建立了戰斗損耗方程,第一次應用微分方程分析兵力與勝負關系,定量地論證了集中兵力原則的正確性。他用現代數學來研究紅藍雙方兵力損耗,經他計算,假設紅方人數100人,藍方80人,在天時地利人和、戰術武器裝備條件均等的情況下,當藍方被全殲,紅方應剩60人。
又如:真正將運籌學用於實戰的是在二戰期間,當時盟國成立了運籌小組。1940年8月,挪威諾貝爾物理學獎獲得者布萊凱特帶領11名人員,成立了第一個運籌學小組,其中只有一名軍官,其他人都是自然科學學者,包括2名數學家、2名理論物理學家、1名測量員、1名天體物理學家、3名生理學家。他們運用自然科學方法,評估戰斗效能,提出戰術建議。較為著名的事例有:通過艦載炸彈、飛機投射炸彈試驗研究,將深水炸彈的爆炸深度從35英尺加深到70英尺,使德軍潛艇被炸沉數成倍增加。
有趣的是,由於第一個運籌小組人員來自不同學科,所以當時人們把這個小組戲稱作"布萊凱特馬戲團"。
盟軍的運籌小組為盟軍取得勝利做出了重大貢獻。二戰結束後,戰勝國和戰敗國都面臨經濟重建,這些運籌小組大部分轉入經濟建設部門。比如美國空軍在二戰時的運籌小組經過多年輾轉變化,最後演變為著名智庫蘭德公司。
❻ 運籌學是什麼學有沒有一個比較好的關於線性規劃的案例分析
運籌學研究運用數學方法解決各種優化問題:包括問題描述、問題建模(模型驗證)、模型求解(演算法選擇與設計)和解的驗證與應用。主要分支包括數學規劃(線性規劃、整數規劃、非線性規劃、動態規劃、隨機規劃等)、圖論與網路、排隊論、存貯論、對策論、決策論等。運籌學屬於應用數學,因此不同分支都有一些數學知識的運用,例如,線性規劃部分,尤其是單純形法,要用到線性代數知識。
關於線性規劃的案例分析,隨便一本運籌學基礎方面的書,都會有線性規劃的案例分析,包括問題背景,數學模型,演算法求解,靈敏度分析等等。
❼ 急!在線等!求助:寫一篇小論文,結合運籌學方法解決一個在工作、學習、生活中所遇到的實際問題!
Operation Research原意是操作研究、作業研究、運用研究、作戰研究,譯作運籌學,是借用了《史記》「運籌策於帷幄之中,決勝於千里之外」一語中「運籌」二字,既顯示其軍事的起源,也表明它在我國已早有萌芽。
運籌學作為一門現代科學,是在第二次世界大戰期間首先在英美兩國發展起來的,有的學者把運籌學描述為就組織系統的各種經營作出決策的科學手段。P.M.Morse與G.E.Kimball在他們的奠基作中給運籌學下的定義是:「運籌學是在實行管理的領域,運用數學方法,對需要進行管理的問題統籌規劃,作出決策的一門應用科學。」運籌學的另一位創始人定義運籌學是:「管理系統的人為了獲得關於系統運行的最優解而必須使用的一種科學方法。」它使用許多數學工具(包括概率統計、數理分析、線性代數等)和邏輯判斷方法,來研究系統中人、財、物的組織管理、籌劃調度等問題,以期發揮最大效益。
現代運籌學的起源可以追溯到幾十年前,在某些組織的管理中最先試用科學手段的時候。可是,現在普遍認為,運籌學的活動是從二次世界大戰初期的軍事任務開始的。當時迫切需要把各項稀少的資源以有效的方式分配給各種不同的軍事經營及在每一經營內的各項活動,所以美國及隨後美國的軍事管理當局都號召大批科學家運用科學手段來處理戰略與戰術問題,實際上這便是要求他們對種種(軍事)經營進行研究,這些科學家小組正是最早的運籌小組。
第二次世界大戰期間,「OR」成功地解決了許多重要作戰問題,顯示了科學的巨大物質威力,為「OR」後來的發展鋪平了道路。
當戰後的工業恢復繁榮時,由於組織內與日俱增的復雜性和專門化所產生的問題,使人們認識到這些問題基本上與戰爭中所曾面臨的問題類似,只是具有不同的現實環境而已,運籌學就這樣潛入工商企業和其它部門,在50年代以後得到了廣泛的應用。對於系統配置、聚散、競爭的運用機理深入的研究和應用,形成了比較完備的一套理論,如規劃論、排隊論、存貯論、決策論等等,由於其理論上的成熟,電子計算機的問世,又大大促進了運籌學的發展,世界上不少國家已成立了致力於該領域及相關活動的專門學會,美國於1952年成立了運籌學會,並出版期刊《運籌學》,世界其它國家也先後創辦了運籌學會與期刊,1957年成立了國際運籌學協會。
運籌學的特點是:1.運籌學已被廣泛應用於工商企業、軍事部門、民政事業等研究組織內的統籌協調問題,故其應用不受行業、部門之限制;2.運籌學既對各種經營進行創造性的科學研究,又涉及到組織的實際管理問題,它具有很強的實踐性,最終應能向決策者提供建設性意見,並應收到實效;3.它以整體最優為目標,從系統的觀點出發,力圖以整個系統最佳的方式來解決該系統各部門之間的利害沖突。對所研究的問題求出最優解,尋求最佳的行動方案,所以它也可看成是一門優化技術,提供的是解決各類問題的優化方法。
運籌學的研究方法有:1.從現實生活場合抽出本質的要素來構造數學模型,因而可尋求一個跟決策者的目標有關的解;2.探索求解的結構並導出系統的求解過程;3.從可行方案中尋求系統的最優解法。
運籌學的具體內容包括:規劃論(包括線性規劃、非線性規劃、整數規劃和動態規劃)、圖論、決策論、對策論、排隊論、存儲論、可靠性理論等。
數學規劃即上面所說的規劃論,是運籌學的一個重要分支,早在1939年蘇聯的康托洛維奇(H.B.Kahtopob )和美國的希奇柯克(F.L.Hitchcock)等人就在生產組織管理和制定交通運輸方案方面首先研究和應用一線性規劃方法。1947年旦茨格等人提出了求解線性規劃問題的單純形方法,為線性規劃的理論與計算奠定了基礎,特別是電子計算機的出現和日益完善,更使規劃論得到迅速的發展,可用電子計算機來處理成千上萬個約束條件和變數的大規模線性規劃問題,從解決技術問題的最優化,到工業、農業、商業、交通運輸業以及決策分析部門都可以發揮作用。從范圍來看,小到一個班組的計劃安排,大至整個部門,以至國民經濟計劃的最優化方案分析,它都有用武之地,具有適應性強,應用面廣,計算技術比較簡便的特點。非線性規劃的基礎性工作則是在1951年由庫恩(H.W.Kuhn)和達克(A.W.Tucker)等人完成的,到了70年代,數學規劃無論是在理論上和方法上,還是在應用的深度和廣度上都得到了進一步的發展。
圖論是一個古老的但又十分活躍的分支,它是網路技術的基礎。圖論的創始人是數學家歐拉。1736年他發表了圖論方面的第一篇論文,解決了著名的哥尼斯堡七橋難題,相隔一百年後,在1847年基爾霍夫第一次應用圖論的原理分析電網,從而把圖論引進到工程技術領域。20世紀50年代以來,圖論的理論得到了進一步發展,將復雜龐大的工程系統和管理問題用圖描述,可以解決很多工程設計和管理決策的最優化問題,例如,完成工程任務的時間最少,距離最短,費用最省等等。圖論受到數學、工程技術及經營管理等各方面越來越廣泛的重視。
排隊論又叫隨機服務系統理論。1909年丹麥的電話工程師愛爾朗(A.K.Erlang)排隊問題,1930年以後,開始了更為一般情況的研究,取得了一些重要成果。1949年前後,開始了對機器管理、陸空交通等方面的研究,1951年以後,理論工作有了新的進展,逐漸奠定了現代隨機服務系統的理論基礎。排隊論主要研究各種系統的排隊隊長,排隊的等待時間及所提供的服務等各種參數,以便求得更好的服務。它是研究系統隨機聚散現象的理論。
可靠性理論是研究系統故障、以提高系統可靠性問題的理論。可靠性理論研究的系統一般分為兩類:(1)不可修系統:如導彈等,這種系統的參數是壽命、可靠度等,(2)可修復系統:如一般的機電設備等,這種系統的重要參數是有效度,其值為系統的正常工作時間與正常工作時間加上事故修理時間之比。
決策論研究決策問題。所謂決策就是根據客觀可能性,藉助一定的理論、方法和工具,科學地選擇最優方案的過程。決策問題是由決策者和決策域構成的,而決策域又由決策空間、狀態空間和結果函數構成。研究決策理論與方法的科學就是決策科學。決策所要解決的問題是多種多樣的,從不同角度有不同的分類方法,按決策者所面臨的自然狀態的確定與否可分為:確定型決策、風險型決策和不確定型決策;按決策所依據的目標個數可分為:單目標決策與多目標決策;按決策問題的性質可分為:戰略決策與策略決策,以及按不同准則劃分成的種種決策問題類型。不同類型的決策問題應採用不同的決策方法。決策的基本步驟為:(1)確定問題,提出決策的目標;(2)發現、探索和擬定各種可行方案;(3)從多種可行方案中,選出最滿意的方案;(4)決策的執行與反饋,以尋求決策的動態最優。
如果決策者的對方也是人(一個人或一群人)雙方都希望取勝,這類具有競爭性的決策稱為對策或博弈型決策。構成對策問題的三個根本要素是:局中人、策略與一局對策的得失。目前對策問題一般可分為有限零和兩人對策、陣地對策、連續對策、多人對策與微分對策等。
運籌學是軟科學中「硬度」較大的一門學科,兼有邏輯的數學和數學的邏輯的性質,是系統工程學和現代管理科學中的一種基礎理論和不可缺少的方法、手段和工具。運籌學已被應用到各種管理工程中,在現代化建設中發揮著重要作用。
在中國戰國時期,曾經有過一次流傳後世的賽馬比賽,相信大家都知道,這就是田忌賽馬。田忌賽馬的故事說明在已有的條件下,經過籌劃、安排,選擇一個最好的方案,就會取得最好的效果。可見,籌劃安排是十分重要的。
現在普遍認為,運籌學是近代應用數學的一個分支,主要是將生產、管理等事件中出現的一些帶有普遍性的運籌問題加以提煉,然後利用數學方法進行解決。前者提供模型,後者提供理論和方法。
運籌學的思想在古代就已經產生了。敵我雙方交戰,要克敵制勝就要在了解雙方情況的基礎上,做出最優的對付敵人的方法,這就是「運籌帷幄之中,決勝千里之外」的說法。
但是作為一門數學學科,用純數學的方法來解決最優方法的選擇安排,卻是晚多了。也可以說,運籌學是在二十世紀四十年代才開始興起的一門分支。
運籌學主要研究經濟活動和軍事活動中能用數量來表達的有關策劃、管理方面的問題。當然,隨著客觀實際的發展,運籌學的許多內容不但研究經濟和軍事活動,有些已經深入到日常生活當中去了。運籌學可以根據問題的要求,通過數學上的分析、運算,得出各種各樣的結果,最後提出綜合性的合理安排,已達到最好的效果。
運籌學作為一門用來解決實際問題的學科,在處理千差萬別的各種問題時,一般有以下幾個步驟:確定目標、制定方案、建立模型、制定解法。
雖然不大可能存在能處理及其廣泛對象的運籌學,但是在運籌學的發展過程中還是形成了某些抽象模型,並能應用解決較廣泛的實際問題。
隨著科學技術和生產的發展,運籌學已滲入很多領域里,發揮了越來越重要的作用。運籌學本身也在不斷發展,現在已經是一個包括好幾個分支的數學部門了。比如:數學規劃(又包含線性規劃;非線性規劃;整數規劃;組合規劃等)、圖論、網路流、決策分析、排隊論、可靠性數學理論、庫存論、對策論、搜索論、模擬等等。
各分支簡介
數學規劃的研究對象是計劃管理工作中有關安排和估值的問題,解決的主要問題是在給定條件下,按某一衡量指標來尋找安排的最優方案。它可以表示成求函數在滿足約束條件下的極大極小值問題。
數學規劃和古典的求極值的問題有本質上的不同,古典方法只能處理具有簡單表達式,和簡單約束條件的情況。而現代的數學規劃中的問題目標函數和約束條件都很復雜,而且要求給出某種精確度的數字解答,因此演算法的研究特別受到重視。
這里最簡單的一種問題就是線性規劃。如果約束條件和目標函數都是呈線性關系的就叫線性規劃。要解決線性規劃問題,從理論上講都要解線性方程組,因此解線性方程組的方法,以及關於行列式、矩陣的知識,就是線性規劃中非常必要的工具。
線性規劃及其解法—單純形法的出現,對運籌學的發展起了重大的推動作用。許多實際問題都可以化成線性規劃來解決,而單純形法有是一個行之有效的演算法,加上計算機的出現,使一些大型復雜的實際問題的解決成為現實。
非線性規劃是線性規劃的進一步發展和繼續。許多實際問題如設計問題、經濟平衡問題都屬於非線性規劃的范疇。非線性規劃擴大了數學規劃的應用范圍,同時也給數學工作者提出了許多基本理論問題,使數學中的如凸分析、數值分析等也得到了發展。還有一種規劃問題和時間有關,叫做「動態規劃」。近年來在工程式控制制、技術物理和通訊中的最佳控制問題中,已經成為經常使用的重要工具。
排隊論是運籌學的又一個分支,它有叫做隨機服務系統理論。它的研究目的是要回答如何改進服務機構或組織被服務的對象,使得某種指標達到最優的問題。比如一個港口應該有多少個碼頭,一個工廠應該有多少維修人員等。
排隊論最初是在二十世紀初由丹麥工程師艾爾郎關於電話交換機的效率研究開始的,在第二次世界大戰中為了對飛機場跑道的容納量進行估算,它得到了進一步的發展,其相應的學科更新論、可靠性理論等也都發展起來。
因為排隊現象是一個隨機現象,因此在研究排隊現象的時候,主要採用的是研究隨機現象的概率論作為主要工具。此外,還有微分和微分方程。排隊論把它所要研究的對象形象的描述為顧客來到服務台前要求接待。如果服務台以被其它顧客佔用,那麼就要排隊。另一方面,服務台也時而空閑、時而忙碌。就需要通過數學方法求得顧客的等待時間、排隊長度等的概率分布。
排隊論在日常生活中的應用是相當廣泛的,比如水庫水量的調節、生產流水線的安排,鐵路分成場的調度、電網的設計等等。
對策論也叫博弈論,前面講的田忌賽馬就是典型的博弈論問題。作為運籌學的一個分支,博弈論的發展也只有幾十年的歷史。系統地創建這門學科的數學家,現在一般公認為是美籍匈牙利數學家、計算機之父——馮·諾依曼。
最初用數學方法研究博弈論是在國際象棋中開始的——如何確定取勝的著法。由於是研究雙方沖突、制勝對策的問題,所以這門學科在軍事方面有著十分重要的應用。近年來,數學家還對水雷和艦艇、殲擊機和轟炸機之間的作戰、追蹤等問題進行了研究,提出了追逃雙方都能自主決策的數學理論。近年來,隨著人工智慧研究的進一步發展,對博弈論提出了更多新的要求。
搜索論是由於第二次世界大戰中戰爭的需要而出現的運籌學分支。主要研究在資源和探測手段受到限制的情況下,如何設計尋找某種目標的最優方案,並加以實施的理論和方法。在第二次世界大戰中,同盟國的空軍和海軍在研究如何針對軸心國的潛艇活動、艦隊運輸和兵力部署等進行甄別的過程中產生的。搜索論在實際應用中也取得了不少成效,例如二十世紀六十年代,美國尋找在大西洋失蹤的核潛艇「打穀者號」和「蠍子號」,以及在地中海尋找丟失的氫彈,都是依據搜索論獲得成功的。
運籌學有廣闊的應用領域,它已滲透到諸如服務、庫存、搜索、人口、對抗、控制、時間表、資源分配、廠址定位、能源、設計、生產、可靠性、等各個方面。
❽ 誰能提供個運籌學現實中的案例
更多的是講的提高效率來提高經濟效益。你從A地要送貨到B,C,D。肯定是帶全了轉一圈最有效率,不然到了B回來,再到C再回來,再到D肯定不經濟。要延伸就把幾個地點距離什麼的加進去,設計個路線
❾ 《運籌學第2版教材》pdf下載在線閱讀全文,求百度網盤雲資源
《運籌學第2版教材》網路網盤pdf最新全集下載:
鏈接:https://pan..com/s/1Vh4352PufrxwlCgApoi4JA
簡介:本書系統地介紹了運籌學中規劃論、圖論、存儲論、排隊論、決策論、對策論及其各分支的主要理論和方法,並通過具體案例介紹了各類模型在管理實際中的應用。作為教材,本書各章均有知識要點、核心概念、典型案例、知識總結及自測練習,便於讀者理解、消化。