當前位置:首頁 » 服務存儲 » 集中式存儲冗餘備份發展現狀
擴展閱讀
webinf下怎麼引入js 2023-08-31 21:54:13
堡壘機怎麼打開web 2023-08-31 21:54:11

集中式存儲冗餘備份發展現狀

發布時間: 2022-09-06 00:46:37

① 什麼是冗餘備份,及其作用

所謂冗餘備份,就是多准備一份或幾份,以備不時之需。例如冗餘備份伺服器,就是2台伺服器互為備份,一台故障了,另一台立刻接替。又如冗餘備份電源,就是一台設備上安裝2個或2個以上的電源模塊,其中一個出故障了,並不會導致設備癱瘓。

② 雲計算的出現,給容災備份帶來了哪些好處

一般信息系統數據備份主要完成以下幾個目的:
1、 完成數據中心各伺服器的數據安全集中存儲
2、 完成各伺服器數據的集中管理。
3、 完成數據的本地、遠程策略備份。
4、 數據備份時,要求備份安全性高(操作人員、數據傳輸、數據存放)不發生數據丟失、泄密。
5、 數據本地存儲的安全性與高可用性。
會給用戶帶來的好處:
1、保證備份作業是完整的、可用的並具有很好的一致性。在災難性事件發生後,你能快速的把資料庫恢復到最新的備份的狀態。
2、在執行操作的過程中,資料庫不需要停止,這可以幫助那些需要7x24小時在線業務系統來說是非常重要的。

③ 如何實現數據存儲的管理

:數據存儲備份和存儲管理源於上世紀70年代的終端/主機計算模式,當時由於數據集中在主機上,因此,易管理的海量存儲設備——磁帶庫是當時必備的設備。80年代以後,由於PC的發展,尤其是90年代應用最廣的客戶機/伺服器模式的普及以及互聯網的迅猛發展,使得存儲容量、存儲模式和存儲要求都發生了根本性的變化,一些新興的存儲技術迅速崛起,為構建一個更安全的信息時代提供了更多的選擇。
編者按如何確保所有數據能夠得到可靠備份,及時進行災難恢復是存儲管理軟體的核心任務。此外存儲管理軟體還存在以下一些基本功能,諸如改進系統和應用I/O性能及存儲管理能力,提高數據和應用系統的高可用性,減少由於各種原因中斷數據存取或者應用系統宕機的時間,實現技術有分級存儲管理(HSM)、ClusterServer(集群伺服器)等。
首先是能提供一些可以識別和分析存儲訪問模式的VolumeManager工具。VolumeManager通過復雜的磁碟配置能均衡I/O負載,在不影響應用的同時能夠優化應用數據的布局。它還可將數據條形散放到多個物理盤上以提高性能,同時還具有在不中斷應用的情況下,識別和消除性能瓶頸的能力,從而增強系統和應用的性能。另外,VolumeManager在減少系統中斷時間、增加數據完整性等方面也有不俗表現。它允許對磁碟進行在線的管理和更改配置,減少對系統產生極大影響的停機時間,同時利用冗餘技術提高數據可用性,防止數據被丟失和破壞。
其次還有一個非常重要的可快速恢復的日誌式文件系統FileSystem,它能在不間斷數據訪問的條件下,對文件作在線備份,並在系統重啟或崩潰前允許訪問數據並恢復文件,從而大大提高用戶和管理員的生產效率。FileSystem在系統崩潰前還能將未完成的數據記錄在一個事件日誌中,利用恢復程序重現,從而保持了數據的完整性。
VolumeManager和FileSystem都工作在操作系統一級,可實現集群與故障恢復、自動管理、備份與HSM以及基於瀏覽器的遠程管理等。兩者有機結合後,利用雙方特有的對磁碟和數據的管理能力,能給企業的系統提供盡可能高的性能、可用性及可管理性。
在此基礎之上便是整個存儲管理的核心任務——備份技術。
數據存儲備份技術一般包含硬體技術及軟體技術等,硬體技術主要是磁帶機技術,軟體技術主要是通用和專用備份軟體技術等。我們主要從軟體技術方面加以討論。備份軟體技術在整個數據存儲備份過程中具有相當的重要性,因為它不僅關繫到是否支持磁帶的各種先進功能,而且在很大程度上決定著備份的效率。最好的備份軟體不一定就是操作系統所提供的備份功能,很多廠商都提供了許多專業的備份軟體。專業備份軟體能通過優化數據傳輸率,即可以自動以較高的傳輸率進行數據傳輸。這不僅能縮短備份時間、提高數據存儲備份速度,而且對磁帶機設備本身也有好處。另外,專業備份軟體還支持新磁帶機技術,如HP的TapeAlert技術,差不多所有主流專業備份軟體均提供支持。
對於存儲模式來說比較常見的有DAS、NAS和SAN等。DAS(DirectAttachedStorage-直接連接存儲)是指將存儲設備通過SCSI介面或光纖通道直接連接到一台計算機上。當伺服器在地理上比較分散、很難通過遠程連接進行互連時,直接連接存儲是比較好的解決方案。直接連接存儲也可幫助企業繼續保留已有的傳輸速率並不很高的網路系統。
網路正成為主要的信息處理模式,需要存儲的數據大量增加,數據作為取得競爭優勢的戰略性資產其重要性在增加,是目前發展的趨勢。NAS和SAN的出現正響應了這一點。NAS就是網路連接存儲,即將存儲設備通過標準的網路拓撲結構(例如乙太網),連接到一群計算機上。它的重點在於幫助工作組和部門級機構解決迅速增加存儲容量的需求。這種方法從兩方面改善了數據的可用性。第一,即使相應的應用伺服器不再工作了,仍然可以讀出數據。第二,簡易伺服器本身不會崩潰,因為它避免了引起伺服器崩潰的首要原因,即應用軟體引起的問題。另外,NAS產品是真正即插即用的產品,其設備的物理位置非常靈活。
SAN(存儲區域網路)通過光纖通道連接到一群計算機上。在該網路中提供了多主機連接,但並非通過標準的網路拓撲,並且通過同一物理通道支持廣泛使用的SCSI和IP協議。它的結構允許任何伺服器連接到任何存儲陣列,這樣不管數據置放在哪裡,伺服器都可直接存取所需的數據。SAN解決方案是從基本功能剝離出存儲功能,所以運行備份操作就無需考慮它們對網路總體性能的影響。這個方案也使得管理及集中控制實現簡化,特別是對於全部存儲設備都集群在一起的時候。
集群通常用於加強應用軟體的可用性與可擴展性。某些集群架構技術會加入單一系統印象的概念,可從單點以單一系統的方式來管理多台計算機。集群伺服器可支持多達上百台互相連接的伺服器,結合為鬆散結合的單位來執行作業,保護彼此的應用軟體免於故障。由於集群伺服器可完全整合應用軟體服務架構,因此可建置高效的應用軟體執行環境,即使整個系統出現故障,終端計算機都還可以使用幾乎所有的應用軟體。集群伺服器軟體包括引擎、編譯器、負載計算器、代理、指令與圖形化系統管理介面等組件。集群化運算環境的最大優勢是卓越的數據處理能力。原則上,任何類型的多重主機架構存儲設備,包括直接連接的磁碟,都可以用來當作集群數據存儲設備。為求得最大的系統可用性,最適合使用擁有多重主機存取路徑的容錯或高可用性存儲子系統。
分層次的管理方式可以解決存儲容量不斷增長導致的如何有效擴充容量的問題。在很多情況下,它更多地用於分布式網路環境中。分級,其實就是意味著用不同的介質來實現存儲,如RAID系統、光存儲設備、磁帶等,每種存儲設備都有其不同的物理特性和不同的價格。例如,要備份的時候,備份文件一般存儲在速度相對比較慢、容量相對比較大、價格相對比較低的存儲設備上如磁帶,這樣做很經濟實用。那麼如何實現分級呢?從原理上來講,分級存儲是從在線系統上遷移數據的一種方法。文件由HSM系統選擇進行遷移,然後被拷貝到HSM介質上。當文件被正確拷貝後,一個和原文件相同名字的標志文件被創建,但它只佔用比原文件小得多的磁碟空間。以後,當用戶訪問這個標志文件時,HSM系統能將原始文件從正確的介質上恢復過來。分級存儲可以有不同的實施方式,HSM根據兩級或三級體系將動態遷移/回遷的數據分類,從而實現分級存儲。
存儲應用的深入必然帶來對整體解決方案的需求,這不僅包括硬體,還包括相應的軟體以及服務。一個軟硬體兼容的融合應用環境是大勢所趨。比如,存儲虛擬化的提出就證明了這一趨勢。因為它有利於提高存儲利用率、簡化管理和降低成本,構建一個融合的存儲應用大環境。總之,隨著網路技術的發展、計算機能力的不斷提高,數據量也在不斷膨脹。數據備份與恢復等存儲技術方面的問題顯得越來越重要,存儲管理技術的發展必將引起業界的高度重視。
相關鏈接:當前主流的存儲介質
磁碟陣列、磁帶庫
磁碟陣列的最大特點是數據存取速度特別快,其主要功能是可提高網路數據的可用性及存儲容量,並將數據有選擇性地分布在多個磁碟上,從而提高系統的數據吞吐率。另外,磁碟陣列還能夠免除單塊硬碟故障所帶來的災難後果,通過把多個較小容量的硬碟連在智能控制器上,可增加存儲容量。磁碟陣列是一種高效、快速、易用的網路存儲備份設備。
廣義的磁帶庫產品包括自動載入磁帶機和磁帶庫。自動載入磁帶機和磁帶庫實際上是將磁帶和磁帶機有機結合組成的。自動載入磁帶機是一個位於單機中的磁帶驅動器和自動磁帶更換裝置,它可以從裝有多盤磁帶的磁帶匣中拾取磁帶並放入驅動器中,或執行相反的過程。自動載入磁帶機能夠支持例行備份過程,自動為每日的備份工作裝載新的磁帶。一個擁有工作組伺服器的小公司或分理處可以使用自動載入磁帶機來自動完成備份工作。
磁帶庫是像自動載入磁帶機一樣的基於磁帶的備份系統,它能夠提供同樣的基本自動備份和數據恢復功能,但同時具有更先進的技術特點。它的存儲容量可達到數百PB(1PB=100萬GB),可以實現連續備份、自動搜索磁帶,也可以在驅動管理軟體控制下實現智能恢復、實時監控和統計,整個數據存儲備份過程完全擺脫了人工干涉。磁帶庫不僅數據存儲量大得多,而且在備份效率和人工佔用方面擁有無可比擬的優勢。在網路系統中,磁帶庫通過SAN(存儲區域網絡)系統可形成網路存儲系統,為企業存儲提供有力保障,很容易完成遠程數據訪問、數據存儲備份,或通過磁帶鏡像技術實現多磁帶庫備份,無疑是數據倉庫、ERP等大型網路應用的良好存儲設備。
光碟塔、光碟庫和光碟網路鏡像伺服器
光碟不僅存儲容量巨大,而且成本低、製作簡單、體積小,更重要的是其信息可以保存100年至300年。光碟塔由幾台或十幾台CD-ROM驅動器並聯構成,可通過軟體來控制某台光碟機的讀寫操作。光碟塔可以同時支持幾十個到幾百個用戶訪問信息。光碟庫也叫自動換盤機,它利用機械手從機櫃中選出一張光碟送到驅動器進行讀寫。它的庫容量極大,機櫃中可放幾十片甚至上百片光碟。光碟庫的特點是:安裝簡單、使用方便,並支持幾乎所有的常見網路操作系統及各種常用通信協議。
光碟網路鏡像伺服器不僅具有大型光碟庫的超大存儲容量,而且還具有與硬碟相同的訪問速度,其單位存儲成本(分攤到每張光碟上的設備成本)大大低於光碟庫和光碟塔,因此光碟網路鏡像伺服器已開始取代光碟庫和光碟塔,逐漸成為光碟網路共享設備中的主流產品。

④ 資料庫技術的國內外發展與應用現狀

資料庫技術是現代信息科學與技術的重要組成部分,是計算機數據處理與信息管理系統的核心。資料庫技術研究和解決了計算機信息處理過程中大量數據有效地組織和存儲的問題,在資料庫系統中減少數據存儲冗餘、實現數據共享、保障數據安全以及高效地檢索數據和處理數據。

隨著計算機技術與網路通信技術的發展,資料庫技術已成為信息社會中對大量數據進行組織與管理的重要技術手段及軟體技術,是網路信息化管理系統的基礎。本章主要介紹資料庫技術的應用與發展、關系模型的基本概念、關系資料庫的設計理論及資料庫設計方法等內容,是學習和掌握現代資料庫技術的基礎。

1.1 資料庫技術的發展與應用
從20世紀60年代末期開始到現在,資料庫技術已經發展了30多年。在這30多年的歷程中,人們在資料庫技術的理論研究和系統開發上都取得了輝煌的成就,而且已經開始對新一代資料庫系統的深入研究。資料庫系統已經成為現代計算機系統的重要組成部分。

1.1.1 資料庫技術與信息技術
信息技術(Information Technology,IT)是當今使用頻率最高的名詞之一,它隨著計算機技術在工業、農業以及日常生活中的廣泛應用,已經被越來越多的個人和企業作為自己趕超世界潮流的標志之一。而資料庫技術則是信息技術中一個重要的支撐。沒有資料庫技術,人們在浩瀚的信息世界中將顯得手足無措。

資料庫技術是計算機科學技術的一個重要分支。從20世紀50年代中期開始,計算機應用從科學研究部門擴展到企業管理及政府行政部門,人們對數據處理的要求也越來越高。1968年,世界上誕生了第一個商品化的信息管理系統IMS(Information Management System),從此,資料庫技術得到了迅猛發展。在互聯網日益被人們接受的今天,Internet又使資料庫技術、知識、技能的重要性得到了充分的放大。現在資料庫已經成為信息管理、辦公自動化、計算機輔助設計等應用的主要軟體工具之一,幫助人們處理各種各樣的信息數據。

1.1.2 資料庫技術的應用及特點
資料庫最初是在大公司或大機構中用作大規模事務處理的基礎。後來隨著個人計算機的普及,資料庫技術被移植到PC機(Personal Computer,個人計算機)上,供單用戶個人資料庫應用。接著,由於PC機在工作組內連成網,資料庫技術就移植到工作組級。現在,資料庫正在Internet和內聯網中廣泛使用。

20世紀60年代中期,資料庫技術是用來解決文件處理系統問題的。當時的資料庫處理技術還很脆弱,常常發生應用不能提交的情況。20世紀70年代關系模型的誕生為資料庫專家提供了構造和處理資料庫的標准方法,推動了關系資料庫的發展和應用。1979年,Ashton-Tate公司引入了微機產品dBase Ⅱ,並稱之為關系資料庫管理系統,從此資料庫技術移植到了個人計算機上。20世紀80年代中期到後期,終端用戶開始使用區域網技術將獨立的計算機連接成網路,終端之間共享資料庫,形成了一種新型的多用戶數據處理,稱為客戶機/伺服器資料庫結構。現在,資料庫技術正在被用來同Internet技術相結合,以便在機構內聯網、部門區域網甚至WWW上發布資料庫數據。

1.1.3 資料庫技術發展歷史
數據模型是資料庫技術的核心和基礎,因此,對資料庫系統發展階段的劃分應該以數據模型的發展演變作為主要依據和標志。按照數據模型的發展演變過程,資料庫技術從開始到現在短短的30年中,主要經歷了三個發展階段:第一代是網狀和層次資料庫系統,第二代是關系資料庫系統,第三代是以面向對象數據模型為主要特徵的資料庫系統。資料庫技術與網路通信技術、人工智慧技術、面向對象程序設計技術、並行計算技術等相互滲透、有機結合,成為當代資料庫技術發展的重要特徵。

1. 第一代資料庫系統
第一代資料庫系統是20世紀70年代研製的層次和網狀資料庫系統。層次資料庫系統的典型代表是1969年IBM公司研製出的層次模型的資料庫管理系統IMS。20世紀60年代末70年代初,美國資料庫系統語言協會CODASYL(Conference on Data System Language)下屬的資料庫任務組DBTG(Data Base Task Group)提出了若干報告,被稱為DBTG報告。DBTG報告確定並建立了網狀資料庫系統的許多概念、方法和技術,是網狀資料庫的典型代表。在DBTG思想和方法的指引下資料庫系統的實現技術不斷成熟,開發了許多商品化的資料庫系統,它們都是基於層次模型和網狀模型的。

可以說,層次資料庫是資料庫系統的先驅,而網狀資料庫則是資料庫概念、方法、技術的奠基者。

2. 第二代資料庫系統
第二代資料庫系統是關系資料庫系統。1970年IBM公司的San Jose研究試驗室的研究員Edgar F. Codd發表了題為《大型共享資料庫數據的關系模型》的論文,提出了關系數據模型,開創了關系資料庫方法和關系資料庫理論,為關系資料庫技術奠定了理論基礎。Edgar F. Codd於1981年被授予ACM圖靈獎,以表彰他在關系資料庫研究方面的傑出貢獻。

20世紀70年代是關系資料庫理論研究和原型開發的時代,其中以IBM公司的San Jose研究試驗室開發的System R和Berkeley大學研製的Ingres為典型代表。大量的理論成果和實踐經驗終於使關系資料庫從實驗室走向了社會,因此,人們把20世紀70年代稱為資料庫時代。20世紀80年代幾乎所有新開發的系統均是關系型的,其中涌現出了許多性能優良的商品化關系資料庫管理系統,如DB2、Ingres、Oracle、Informix、Sybase等。這些商用資料庫系統的應用使資料庫技術日益廣泛地應用到企業管理、情報檢索、輔助決策等方面,成為實現和優化信息系統的基本技術。

3. 第三代資料庫系統
從20世紀80年代以來,資料庫技術在商業上的巨大成功刺激了其他領域對資料庫技術需求的迅速增長。這些新的領域為資料庫應用開辟了新的天地,並在應用中提出了一些新的數據管理的需求,推動了資料庫技術的研究與發展。

1990年高級DBMS功能委員會發表了《第三代資料庫系統宣言》,提出了第三代資料庫管理系統應具有的三個基本特徵:

l 應支持數據管理、對象管理和知識管理。

l 必須保持或繼承第二代資料庫系統的技術。

l 必須對其他系統開放。

面向對象數據模型是第三代資料庫系統的主要特徵之一;資料庫技術與多學科技術的有機結合也是第三代資料庫技術的一個重要特徵。分布式資料庫、並行資料庫、工程資料庫、演繹資料庫、知識庫、多媒體庫、模糊資料庫等都是這方面的實例。

1.1.4 資料庫系統訪問技術
目前訪問資料庫伺服器的主流標准介面主要有ODBC、OLE DB和ADO。下面分別對這三種介面進行概要介紹。

1. 開放資料庫連接(ODBC)
開放資料庫連接(Open Database Connectivity,ODBC)是由Microsoft公司定義的一種資料庫訪問標准。使用ODBC應用程序不僅可以訪問存儲在本地計算機的桌面型資料庫中的數據,而且可以訪問異構平台上的資料庫,例如可以訪問SQL Server、Oracle、Informix或DB2構建的資料庫等。

ODBC是一種重要的訪問資料庫的應用程序編程介面(Application Programming Interface,API),基於標準的SQL語句,它的核心就是SQL語句,因此,為了通過ODBC訪問資料庫伺服器,資料庫伺服器必須支持SQL語句。

ODBC通過一組標準的函數(ODBC API)調用來實現資料庫的訪問,但是程序員不必理解這些ODBC,API就可以輕松開發基於ODBC的客戶機/伺服器應用程序。這是因為在很多流行的程序開發語言中,如Visual Basic、PowerBuilder、Visual C++等,都提供了封裝ODBC各種標准函數的代碼層,開發人員可以直接使用這些標准函數。

ODBC獲得了巨大成功並大大簡化了一些資料庫開發工作。但是它也存在嚴重的不足,因此Microsoft公司又開發了OLE DB。

2. OLE DB
OLE DB是Microsoft公司提供的關於資料庫系統級程序的介面(System-Level Programming Interface),是Microsoft公司資料庫訪問的基礎。OLE DB實際上是Microsoft公司OLE對象標準的一個實現。OLE DB對象本身是COM(組件對象模型)對象並支持這種對象的所有必需的介面。

一般說來,OLE DB提供了兩種訪問資料庫的方法:一種是通過ODBC驅動器訪問支持SQL語言的資料庫伺服器;另一種是直接通過原始的OLE DB提供程序。因為ODBC只適用於支持SQL語言的資料庫,因此ODBC的使用范圍過於狹窄,目前Microsoft公司正在逐步用OLE DB來取代ODBC。

因為OLE DB是一個面向對象的介面,特別適合於面向對象語言。然而,許多資料庫應用開發者使用VBScript和JScript等腳本語言開發程序,所以Microsoft公司在OLE DB對象的基礎上定義了ADO。

3. 動態數據對象(ADO)
動態數據對象(Active Data Objects,ADO)是一種簡單的對象模型,可以被開發者用來處理任何OLE DB數據,可以由腳本語言或高級語言調用。ADO對資料庫提供了應用程序水平級的介面(Application-Level Programming Interface),幾乎使用任何語言的程序員都能夠通過使用ADO來使用OLE DB的功能。Microsoft公司聲稱,ADO將替換其他的數據訪問方式,所以ADO對於任何使用Microsoft公司產品的資料庫應用是至關重要的。

1.1.5 網路資料庫系統編程技術
在當今網路盛行的年代,資料庫與Web技術的結合正在深刻改變著網路應用。有了資料庫的支持,擴展網頁功能、設計互動式頁面、構造功能強大的後台管理系統、更新網站和維護網站都將變得輕而易舉。隨著網路應用的深入,Web資料庫技術將日益顯示出其重要地位。在這里簡單介紹一下Web資料庫開發的相關技術。

1. 通用網關介面(CGI)編程
通用網關介面(Common Gateway Interface,CGI)是一種通信標准,它的任務是接受客戶端的請求,經過辨認和處理,生成HTML文檔並重新傳回到客戶端。這種交流過程的編程就叫做CGI編程。CGI可以運行在多種平台上,具有強大的功能,可以使用多種語言編程,如Visual Basic、Visual C++、Tcl、Perl、AppletScript等,比較常見的是用Perl語言編寫的CGI程序。但是CGI也有其致命的弱點,即速度慢和安全性差等。

2. 動態伺服器頁面(ASP)
動態伺服器頁面(Active Server Pages,ASP)是Microsoft公司推出的一種用以取代CGI的技術,是一種真正簡便易學、功能強大的伺服器編程技術。ASP實際上是Microsoft公司開發的一套伺服器端腳本運行環境,通過ASP可以建立動態的、交互的、高效的Web伺服器應用程序。用ASP編寫的程序都在伺服器端執行,程序執行完畢後,再將執行的結果返回給客戶端瀏覽器,這樣不僅減輕了客戶端瀏覽器的負擔,大大提高了交互速度,而且避免了ASP程序源代碼的外泄,提高了程序的安全性。

3. Java 伺服器頁面(JSP)
Java伺服器頁面(Java Server Pages,JSP)是Sun公司發布的Web應用程序開發技術,一經推出,就受到了人們的廣泛關注。JSP技術為創建高度動態的Web應用程序提供了一個獨特的開發環境,它能夠適用於市場上大多數的伺服器產品。

JSP使用Java語言編寫伺服器端程序,當客戶端向伺服器發出請求時,JSP源程序被編譯成Servlet並由Java虛擬機執行。這種編譯操作僅在對JSP頁面的第一次請求時發生。因此,JSP程序能夠提供更快的交互速度,其安全性和跨平台性也很優秀。

⑤ 集中式數據處理和分布式數據處理的優缺點

集中式數據處理優點:

1、部署結構簡單。

2、數據容易備份,只需要把中央計算機上的數據備份即可。

3、不易感染病毒,只要對中央計算機做好保護,終端一般不需要外接設備,感染病毒的幾率很低。

4、總費用較低,中央計算機的功能非常強大,終端只需要簡單、便宜的設備。

缺點:

1、中央計算機需要執行所有的運算,當終端很多時,會導致響應速度變慢。

2、如果終端用戶有不同的需要,要對每個用戶的程序和資源做單獨的配置,在集中式系統上做起來比較困難,而且效率不高。

分布式數據處理優點:

1、分布式網路中的每台機器都能存儲和處理數據,降低了對機器性能的要求,所以不必購買昂貴的高性能機器,這大大降低了硬體投資成本。

2、擴展性極佳。在當前系統存儲或計算能力不足時,可以簡單地通過增加廉價PC機的方式來增加系統的處理和存儲能力。

3、處理能力極強。龐大的計算任務可以在合理分割後由分布式網路中的機器並行地處理

缺點

1、計算程序全負荷運行時仍會對計算機的各個部件造成一定壓力。

2、對項目方來說,參加分布式計算的志願者不是項目方自己的人員,不是全體可信任,因此必須引入一定的冗餘計算機制,才能防止計算錯誤、惡意作弊等。



(5)集中式存儲冗餘備份發展現狀擴展閱讀

分布式計算為信息不只分布在一個軟體或計算機上,而是分布於多個軟體上,可以用多台或一台計算機同時運行若干個軟體,通過網路實現信息的共享。與其他演算法相比,分布式演算法有明顯的優勢:

1、共享資源更加方便。

2、能夠實現計算負載的平衡,用多台計算機同時處理任務。

3、可以根據實際需要合理選擇適當的計算機運行該程序。計算機分布式計算的靈魂是平衡負載和共享資源。分布式計算具有高效、快捷、准確的優勢

⑥ 什麼是分布式數據存儲

什麼是分布式存儲

分布式存儲是一種數據存儲技術,它通過網路使用企業中每台機器上的磁碟空間,這些分散的存儲資源構成了虛擬存儲設備,數據分布存儲在企業的各個角落。

分布式存儲系統,可在多個獨立設備上分發數據。傳統的網路存儲系統使用集中存儲伺服器來存儲所有數據。存儲伺服器成為系統性能的瓶頸,也是可靠性和安全性的焦點,無法滿足大規模存儲應用的需求。分布式網路存儲系統採用可擴展的系統結構,使用多個存儲伺服器共享存儲負載,利用位置伺服器定位存儲信息,不僅提高了系統的可靠性,可用性和訪問效率,而且易於擴展。

⑦ 簡要介紹下計算機存儲器的發展

計算機怎麼是這樣一個驚人的小配件? 對許多人他們可以’ t是,因此驚奇關於怎樣計算機改變了我們居住的方式。 計算機在許多大小和形狀可能現在被發現。 幾乎每家電似乎有他們被找出的自己的微型計算機某處。 從汽車到大廈對幾乎每個小配件有,每一個大多時間有計算機工作做他們跑和改變我們居住生活的方式。

首要,計算機的最重要的組分是它的處理器。 它被認為做所有計算和處理計算機的心臟。 但與所有處理的那計算和,計算機贏取了’ t是這樣一個卓越的小配件如果不為它驚人的記憶。 計算機存儲器使成為可能保留重要信息關於計算機。 可以再次使用這樣數據和被檢索當有些存儲的數據是需要的時。 不用計算機存儲器,處理器在哪裡不會有設施存放它的,從而使他們的重要演算和過程無用。

有分配的計算機存儲器的不同的類型存放數據的不同的類型。 當它來到存放必要的數據在計算機裡面時,他們也有不同的能力和專業。 最響譽的計算機存儲器是RAM,否則通認作為隨機存取存儲器。 它稱隨機存取,因為所有存儲的數據可以直接地訪問,如果您知道相交某一存儲單元的確切的列和專欄。 在計算機存儲器的這個類型,數據可以按任何順序訪問。 RAM ’ s確切在對面稱SAM或串列存取記憶,存放數據參加一系列存儲單元可能按順序只訪問。 它經營很象盒式磁帶,您必須審閱其他存儲單元在訪問您尋找的數據之前。

計算機存儲器的其他類型包括ROM或只讀存儲器。 ROM是集成電路已經編程以不可能修改或改變的具體數據,因此僅命名“讀的”。 也有計算機存儲器叫的虛擬內存的另一個類型。 記憶的這個類型是一個共同的組分在多數操作系統和桌面。 它幫助計算機RAM釋放以未使用的應用做方式為裝載使用的當前應用。 它在計算機’ s硬碟簡單地運作在檢查在RAM存放的數據旁邊最近不使用並且安排它被存放,從而釋放可貴的空間在RAM為裝載其他應用。 一個虛擬內存將做一台計算機認為它有幾乎無限的RAM在它裡面。

的計算機存儲器的另一個類型使計算機處理任務更加快速是什麼稱高速緩沖存儲器。 高速緩沖存儲器簡單地運作在有旁邊當前應用、在它的記憶存放的演算和過程而不是直接地到主要儲藏區域。 當某一過程是需要早先半新的數據,它首先將設法訪問高速緩沖存儲器,如果這樣數據在訪問中央記憶貯存區之前被存放那裡。 這從尋找數據在一個更大和更大的記憶貯存區釋放計算機並且使數據提取更加快速。 計算機存儲器在發展一個恆定的狀態,當技術越來越被開發。 誰知道,計算機存儲器也許為人的消耗量也在不久將來可能適合。

⑧ 冗餘備份的介紹

冗餘備份,就是多准備一份或幾份,以備不時之需。例如冗餘備份伺服器,就是2台伺服器互為備份,一台故障了,另一台立刻接替。

⑨ 存儲器的發展史

存儲器設備發展

1.存儲器設備發展之汞延遲線

汞延遲線是基於汞在室溫時是液體,同時又是導體,每比特數據用機械波的波峰(1)和波谷(0)表示。機械波從汞柱的一端開始,一定厚度的熔融態金屬汞通過一振動膜片沿著縱向從一端傳到另一端,這樣就得名「汞延遲線」。在管的另一端,一感測器得到每一比特的信息,並反饋到起點。設想是汞獲取並延遲這些數據,這樣它們便能存儲了。這個過程是機械和電子的奇妙結合。缺點是由於環境條件的限制,這種存儲器方式會受各種環境因素影響而不精確。

1950年,世界上第一台具有存儲程序功能的計算機EDVAC由馮.諾依曼博士領導設計。它的主要特點是採用二進制,使用汞延遲線作存儲器,指令和程序可存入計算機中。

1951年3月,由ENIAC的主要設計者莫克利和埃克特設計的第一台通用自動計算機UNIVAC-I交付使用。它不僅能作科學計算,而且能作數據處理。

2.存儲器設備發展之磁帶

UNIVAC-I第一次採用磁帶機作外存儲器,首先用奇偶校驗方法和雙重運算線路來提高系統的可靠性,並最先進行了自動編程的試驗。

磁帶是所有存儲器設備發展中單位存儲信息成本最低、容量最大、標准化程度最高的常用存儲介質之一。它互換性好、易於保存,近年來,由於採用了具有高糾錯能力的編碼技術和即寫即讀的通道技術,大大提高了磁帶存儲的可靠性和讀寫速度。根據讀寫磁帶的工作原理可分為螺旋掃描技術、線性記錄(數據流)技術、DLT技術以及比較先進的LTO技術。

根據讀寫磁帶的工作原理,磁帶機可以分為六種規格。其中兩種採用螺旋掃描讀寫方式的是面向工作組級的DAT(4mm)磁帶機和面向部門級的8mm磁帶機,另外四種則是選用數據流存儲技術設計的設備,它們分別是採用單磁頭讀寫方式、磁帶寬度為1/4英寸、面向低端應用的Travan和DC系列,以及採用多磁頭讀寫方式、磁帶寬度均為1/2英寸、面向高端應用的DLT和IBM的3480/3490/3590系列等。

磁帶庫是基於磁帶的備份系統,它能夠提供同樣的基本自動備份和數據恢復功能,但同時具有更先進的技術特點。它的存儲容量可達到數百PB,可以實現連續備份、自動搜索磁帶,也可以在驅動管理軟體控制下實現智能恢復、實時監控和統計,整個數據存儲備份過程完全擺脫了人工干涉。

磁帶庫不僅數據存儲量大得多,而且在備份效率和人工佔用方面擁有無可比擬的優勢。在網路系統中,磁帶庫通過SAN(Storage Area Network,存儲區域網路)系統可形成網路存儲系統,為企業存儲提供有力保障,很容易完成遠程數據訪問、數據存儲備份或通過磁帶鏡像技術實現多磁帶庫備份,無疑是數據倉庫、ERP等大型網路應用的良好存儲設備。

3.存儲器設備發展之磁鼓

1953年,隨著存儲器設備發展,第一台磁鼓應用於IBM 701,它是作為內存儲器使用的。磁鼓是利用鋁鼓筒表面塗覆的磁性材料來存儲數據的。鼓筒旋轉速度很高,因此存取速度快。它採用飽和磁記錄,從固定式磁頭發展到浮動式磁頭,從採用磁膠發展到採用電鍍的連續磁介質。這些都為後來的磁碟存儲器打下了基礎。

磁鼓最大的缺點是利用率不高, 一個大圓柱體只有表面一層用於存儲,而磁碟的兩面都利用來存儲,顯然利用率要高得多。 因此,當磁碟出現後,磁鼓就被淘汰了。

4.存儲器設備發展之磁芯

美國物理學家王安1950年提出了利用磁性材料製造存儲器的思想。福雷斯特則將這一思想變成了現實。

為了實現磁芯存儲,福雷斯特需要一種物質,這種物質應該有一個非常明確的磁化閾值。他找到在新澤西生產電視機用鐵氧體變換器的一家公司的德國老陶瓷專家,利用熔化鐵礦和氧化物獲取了特定的磁性質。

對磁化有明確閾值是設計的關鍵。這種電線的網格和芯子織在電線網上,被人稱為芯子存儲,它的有關專利對發展計算機非常關鍵。這個方案可靠並且穩定。磁化相對來說是永久的,所以在系統的電源關閉後,存儲的數據仍然保留著。既然磁場能以電子的速度來閱讀,這使互動式計算有了可能。更進一步,因為是電線網格,存儲陣列的任何部分都能訪問,也就是說,不同的數據可以存儲在電線網的不同位置,並且閱讀所在位置的一束比特就能立即存取。這稱為隨機存取存儲器(RAM),在存儲器設備發展歷程中它是互動式計算的革新概念。福雷斯特把這些專利轉讓給麻省理工學院,學院每年靠這些專利收到1500萬~2000萬美元。

最先獲得這些專利許可證的是IBM,IBM最終獲得了在北美防衛軍事基地安裝「旋風」的商業合同。更重要的是,自20世紀50年代以來,所有大型和中型計算機也採用了這一系統。磁芯存儲從20世紀50年代、60年代,直至70年代初,一直是計算機主存的標准方式。

5.存儲器設備發展之磁碟

世界第一台硬碟存儲器是由IBM公司在1956年發明的,其型號為IBM 350 RAMAC(Random Access Method of Accounting and Control)。這套系統的總容量只有5MB,共使用了50個直徑為24英寸的磁碟。1968年,IBM公司提出「溫徹斯特/Winchester」技術,其要點是將高速旋轉的磁碟、磁頭及其尋道機構等全部密封在一個無塵的封閉體中,形成一個頭盤組合件(HDA),與外界環境隔絕,避免了灰塵的污染,並採用小型化輕浮力的磁頭浮動塊,碟片表面塗潤滑劑,實行接觸起停,這是現代絕大多數硬碟的原型。1979年,IBM發明了薄膜磁頭,進一步減輕了磁頭重量,使更快的存取速度、更高的存儲密度成為可能。20世紀80年代末期,IBM公司又對存儲器設備發展作出一項重大貢獻,發明了MR(Magneto Resistive)磁阻磁頭,這種磁頭在讀取數據時對信號變化相當敏感,使得碟片的存儲密度比以往提高了數十倍。1991年,IBM生產的3.5英寸硬碟使用了MR磁頭,使硬碟的容量首次達到了1GB,從此,硬碟容量開始進入了GB數量級。IBM還發明了PRML(Partial Response Maximum Likelihood)的信號讀取技術,使信號檢測的靈敏度大幅度提高,從而可以大幅度提高記錄密度。

目前,硬碟的面密度已經達到每平方英寸100Gb以上,是容量、性價比最大的一種存儲設備。因而,在計算機的外存儲設備中,還沒有一種其他的存儲設備能夠在最近幾年中對其統治地位產生挑戰。硬碟不僅用於各種計算機和伺服器中,在磁碟陣列和各種網路存儲系統中,它也是基本的存儲單元。值得注意的是,近年來微硬碟的出現和快速發展為移動存儲提供了一種較為理想的存儲介質。在快閃記憶體晶元難以承擔的大容量移動存儲領域,微硬碟可大顯身手。目前尺寸為1英寸的硬碟,存儲容量已達4GB,10GB容量的1英寸硬碟不久也會面世。微硬碟廣泛應用於數碼相機、MP3設備和各種手持電子類設備。

另一種磁碟存儲設備是軟盤,從早期的8英寸軟盤、5.25英寸軟盤到3.5英寸軟盤,主要為數據交換和小容量備份之用。其中,3.5英寸1.44MB軟盤占據計算機的標准配置地位近20年之久,之後出現過24MB、100MB、200MB的高密度過渡性軟盤和軟碟機產品。然而,由於USB介面的快閃記憶體出現,軟盤作為數據交換和小容量備份的統治地位已經動搖,不久會退出存儲器設備發展歷史舞台。

6. 存儲器設備發展之光碟

光碟主要分為只讀型光碟和讀寫型光碟。只讀型指光碟上的內容是固定的,不能寫入、修改,只能讀取其中的內容。讀寫型則允許人們對光碟內容進行修改,可以抹去原來的內容,寫入新的內容。用於微型計算機的光碟主要有CD-ROM、CD-R/W和DVD-ROM等幾種。

上世紀60年代,荷蘭飛利浦公司的研究人員開始使用激光光束進行記錄和重放信息的研究。1972年,他們的研究獲得了成功,1978年投放市場。最初的產品就是大家所熟知的激光視盤(LD,Laser Vision Disc)系統。

從LD的誕生至計算機用的CD-ROM,經歷了三個階段,即LD-激光視盤、CD-DA激光唱盤、CD-ROM。下面簡單介紹這三個存儲器設備發展階段性的產品特點。

LD-激光視盤,就是通常所說的LCD,直徑較大,為12英寸,兩面都可以記錄信息,但是它記錄的信號是模擬信號。模擬信號的處理機制是指,模擬的電視圖像信號和模擬的聲音信號都要經過FM(Frequency Molation)頻率調制、線性疊加,然後進行限幅放大。限幅後的信號以0.5微米寬的凹坑長短來表示。

CD-DA激光唱盤 LD雖然取得了成功,但由於事先沒有制定統一的標准,使它的開發和製作一開始就陷入昂貴的資金投入中。1982年,由飛利浦公司和索尼公司制定了CD-DA激光唱盤的紅皮書(Red Book)標准。由此,一種新型的激光唱盤誕生了。CD-DA激光唱盤記錄音響的方法與LD系統不同,CD-DA激光唱盤系統首先把模擬的音響信號進行PCM(脈沖編碼調制)數字化處理,再經過EMF(8~14位調制)編碼之後記錄到盤上。數字記錄代替模擬記錄的好處是,對干擾和雜訊不敏感,由於盤本身的缺陷、劃傷或沾污而引起的錯誤可以校正。

CD-DA系統取得成功以後,使飛利浦公司和索尼公司很自然地想到利用CD-DA作為計算機的大容量只讀存儲器。但要把CD-DA作為計算機的存儲器,還必須解決兩個重要問題,即建立適合於計算機讀寫的盤的數據結構,以及CD-DA誤碼率必須從現有的10-9降低到10-12以下,由此就產生了CD-ROM的黃皮書(Yellow Book)標准。這個標準的核心思想是,盤上的數據以數據塊的形式來組織,每塊都要有地址,這樣一來,盤上的數據就能從幾百兆位元組的存儲空間上被迅速找到。為了降低誤碼率,採用增加一種錯誤檢測和錯誤校正的方案。錯誤檢測採用了循環冗餘檢測碼,即所謂CRC,錯誤校正採用里德-索洛蒙(Reed Solomon)碼。黃皮書確立了CD-ROM的物理結構,而為了使其能在計算機上完全兼容,後來又制定了CD-ROM的文件系統標准,即ISO 9660。

在上世紀80年代中期,光碟存儲器設備發展速度非常快,先後推出了WORM光碟、磁光碟(MO)、相變光碟(Phase Change Disk,PCD)等新品種。20世紀90年代,DVD-ROM、CD-R、CD-R/W等開始出現和普及,目前已成為計算機的標准存儲設備。

光碟技術進一步向高密度發展,藍光光碟是不久將推出的下一代高密度光碟。多層多階光碟和全息存儲光碟正在實驗室研究之中,可望在5年之內推向市場。

7.存儲器設備發展之納米存儲

納米是一種長度單位,符號為nm。1納米=1毫微米,約為10個原子的長度。假設一根頭發的直徑為0.05毫米,把它徑向平均剖成5萬根,每根的厚度即約為1納米。與納米存儲有關的主要進展有如下內容。

1998年,美國明尼蘇達大學和普林斯頓大學制備成功量子磁碟,這種磁碟是由磁性納米棒組成的納米陣列體系。一個量子磁碟相當於我們現在的10萬~100萬個磁碟,而能源消耗卻降低了1萬倍。

1988年,法國人首先發現了巨磁電阻效應,到1997年,採用巨磁電阻原理的納米結構器件已在美國問世,它在磁存儲、磁記憶和計算機讀寫磁頭等方面均有廣闊的應用前景。

2002年9月,美國威斯康星州大學的科研小組宣布,他們在室溫條件下通過操縱單個原子,研製出原子級的硅記憶材料,其存儲信息的密度是目前光碟的100萬倍。這是納米存儲材料技術研究的一大進展。該小組發表在《納米技術》雜志上的研究報告稱,新的記憶材料構建在硅材料表面上。研究人員首先使金元素在硅材料表面升華,形成精確的原子軌道;然後再使硅元素升華,使其按上述原子軌道進行排列;最後,藉助於掃瞄隧道顯微鏡的探針,從這些排列整齊的硅原子中間隔抽出硅原子,被抽空的部分代表「0」,餘下的硅原子則代表「1」,這就形成了相當於計算機晶體管功能的原子級記憶材料。整個試驗研究在室溫條件下進行。研究小組負責人赫姆薩爾教授說,在室溫條件下,一次操縱一批原子進行排列並不容易。更為重要的是,記憶材料中硅原子排列線內的間隔是一個原子大小。這保證了記憶材料的原子級水平。赫姆薩爾教授說,新的硅記憶材料與目前硅存儲材料存儲功能相同,而不同之處在於,前者為原子級體積,利用其製造的計算機存儲材料體積更小、密度更大。這可使未來計算機微型化,且存儲信息的功能更為強大。

以上就是本文向大家介紹的存儲器設備發展歷程的7個關鍵時期

⑩ 雲存儲的雲存儲現狀

早在2010年,關於雲存儲的使用情況,只有少於14%的調查受訪者痛快地表示正在採用。但是,在我們最近的大多數調查中,我們看到了使用雲存儲的企業數量呈上升趨勢。比如2012年,這個數量是30%。在過去的幾個月的兩個調查中,44%-48%的企業表示他們目前正在使用某種雲存儲,因此在雲中儲存數據的企業是在持續上漲的。
短短兩年時間,雲存儲從少於14個百分點開始發展到這個程度實際上相當讓人印象深刻。調查與調查之間的數據變化如此之寬泛,但是雲端15TB-32TB的平均數據范圍卻意外的下降了。尤其是最大賣點是彈性和無限制容量的服務集。
從這些平均數據的角度來看,在去年春天的「雲存儲采購意向」調查中,我們詢問公司所維持的存儲容量是多少,包括磁碟、快閃記憶體、光纖、雲、磁帶、餅干碼(cookiejar)等等。平均為1.4PB——這可是PB級別。
如果我們在深入一點,這些相同的受訪者表示存儲中平均有326TB的「活躍」數據。因此,即使我們假設這些公司存儲在雲端的所有雲存儲數據都是活躍的(這顯然是不正確的),也就意味著這些雲存儲公司只有平均5%-10%的數據向雲輸送。
根據2015 TechTarget雲存儲調查結果,我們發現50%的受訪者表示他們使用雲作為生產數據的主要存儲方式,但是有一個更大的數字,即63%的IT部門表示使用雲作為數據備份。同時,43%的用戶用雲進行數據歸檔。
「如果企業還沒有開始雲存儲,備份和長期數據歸檔通常是這種轉換最好的開始點,」Nowalk說道,並指出這些最初的用例的運營成本也對於採用雲存儲的企業更易於看到。
然而,許多調查受訪者表示使用雲進行數據備份的一個原因在於雲存儲服務在市場上的佔有率,從更為傳統的產品,比如來自CommVault的產品,到雲網關,甚至是新出現的雲災難恢復,比如數據保護即服務,Nadkarni說道。
雖然更多的組織開始試水雲存儲,不管是通過備份服務、歸檔或者使用雲來保存生產數據,並不是所有的企業都開始這樣做。圍繞安全、法規遵從的擔憂,以及圍繞雲服務的廠商鎖定問題仍舊是一些IT部門沒有開始的主要原因。
「讓人們還保持冷靜的就是廠商鎖定,」Nadkarni說道,「他們想如果他們的數據進入雲,他們該怎麼弄回來。」
但是,好消息就是現在的雲存儲選擇要比以前多很多。他指出谷歌的近線冷存儲和數據歸檔服務,與之對應的就是亞馬遜Web服務的Glacier,這二者就是企業可以考慮的新雲存儲選擇。