Ⅰ 儲能材料與技術的目錄
第1章 緒論1
1.1 氣候變化與能源效率1
1.2 儲能技術及其應用2
1.2.1 什麼是儲能2
1.2.2 什麼是儲能技術2
1.2.3 能量儲存方法4
1.2.4 儲能系統的評價指標7
1.2.5 儲能技術的應用7
1.3 儲能技術發展狀況與展望11
1.3.1 儲能技術發展的歷史11
1.3.2 儲能技術發展的前景14
1.3.3 儲能技術面臨的挑戰15
1.3.4 需要研究的課題15
參考文獻15
第2章 儲能技術原理17
2.1 能量轉換原理17
2.1.1 能量的基本轉換過程17
2.1.2 熱力學基本定律18
2.1.3 熱力學第二定律19
2.2 熱機的原理22
2.3 機械能儲存技術24
2.4 熱能儲存技術27
2.5 化學能儲存技術34
2.6 電能儲存技術38
2.7 氣體水合物儲能技術39
參考文獻42
第3章 儲能材料的基本特性45
3.1 相變的焓差(Δ??H??) 45
3.2 相平衡特性47
3.3 相變過程的特性54
3.4 氣體水合物的特性56
3.5 水的特性60
3.6 冰的特性61
3.7 水合鹽的特性62
3.8 高分子儲能材料的特性63
3.9 儲能材料的熱物性及測定方法65
3.10 儲能材料的遴選原則70
3.11 常用材料的儲能特性對比71
參考文獻73
第4章 冰蓄冷空調技術及其應用74
4.1 發展蓄冷空調的效益分析74
4.1.1 社會效益74
4.1.2 經濟效益76
4.2 空調蓄冷方式及其技術77
4.2.1 水蓄冷77
4.2.2 冰蓄冷79
4.2.3 共晶鹽蓄冷85
4.3 空調蓄冷系統運行方式85
4.3.1 水蓄冷系統85
4.3.2 冰蓄冷系統87
4.4 蓄冷空調系統設計方法92
4.4.1 典型設計日空調冷負荷92
4.4.2 蓄冰裝置的形式選擇95
4.4.3 確定蓄冰系統的形式和運行策略96
4.4.4 確定製冷主機和蓄冰裝置的容量97
4.4.5 選擇其他配套設備98
4.4.6 蓄冷空調工程實例簡介102
4.5 蓄冷空調發展106
參考文獻108
第5章 電能儲存技術及應用110
5.1 概述110
5.2 抽水蓄能的應用111
5.2.1 抽水蓄能電站的工作原理111
5.2.2 抽水蓄能電站的類型112
5.2.3 抽水蓄能電站的組成部分114
5.2.4 抽水蓄能電站在電力系統中的作用115
5.2.5 近年國內抽水蓄能電站發展狀況117
5.3 超導儲電能技術的應用119
5.3.1 超導磁儲能技術119
5.3.2 超導磁懸浮飛輪儲能技術126
5.4 電容器儲能技術的應用131
5.4.1 電容器儲能原理131
5.4.2 箔式結構脈沖電容器132
5.4.3 自愈式高能儲能密度電容器132
5.4.4 高能儲能密度電容器的發展趨勢133
5.5 壓縮空氣儲電技術的應用135
5.5.1 壓縮空氣儲電技術簡介135
5.5.2 利用壓縮空氣儲存電能的原理136
5.5.3 壓縮空氣儲能技術的發展現狀137
參考文獻141
第6章 熱能儲存技術的應用143
6.1 熱的傳遞方式144
6.2 熱能儲存方式146
6.2.1 顯熱儲存(sensible heat storage) 146
6.2.2 潛熱儲能(latent heat storage) 148
6.2.3 化學反應熱儲存(chemical reaction heat storage) 149
6.3 蓄熱技術的應用149
6.3.1 太陽能熱儲存149
6.3.2 電力調峰及電熱余熱儲存150
6.3.3 工業加熱及熱能儲存151
6.4 幾種蓄熱系統的實現方法151
6.4.1 水蓄熱151
6.4.2 冰蓄熱152
6.4.3 蒸汽蓄熱154
6.4.4 相變材料蓄熱156
6.5 蓄熱系統用於北方供暖159
6.5.1 蓄熱式電鍋爐159
6.5.2 推廣應用蓄熱式電鍋爐的意義161
6.5.3 蓄熱式電鍋爐的設計計算實例162
參考文獻167
第7章 氣體水合物儲能技術及其應用168
7.1 概述168
7.2 氣體水合物的性質169
7.2.1 氣體水合物的定義169
7.2.2 氣體水合物的物理性質169
7.3 氣體水合物蓄冷現狀170
7.4 氣體水合物蓄冷工質的選擇174
7.5 氣體水合物相平衡175
7.5.1 氣體水合物相平衡實驗175
Ⅱ 熱貯存的溫度最低是
熱儲存的溫度最低是60℃以上。
不管採用水浴保溫還是明火加熱保溫,必須把食品的溫度保持在60℃以上,保溫溫度低於這個溫度,則可能加速細菌的生長繁殖。
盛放在大容器的熱菜散熱較慢,降溫的時間較長,延長了食物在適合於細菌繁殖的溫度范圍內的存放時間。一旦加熱後的食物中有耐熱的細菌芽孢殘存或通過容器使食物再次受到污染,使食物變質甚至引起食物中毒。因此熱食品儲存應盡量避免使用過大容器。
熱力學基礎:
儲熱技術包括兩個方面的要素,其一是熱能的轉化,它既包括熱能與其它形式的能之間的轉化,也包括熱能在不同物質載體之間的傳遞;其二為熱能的儲存,即熱能在物質載體上的存在狀態,理論上表現為其熱力學特徵。
雖然儲熱有顯熱儲熱、潛熱儲熱和化學反應儲熱等多種形式,但本質上均是物質中大量分子熱運動時的能量。因而從一般意義上講,熱能存儲的熱力學性質與熱力學性質相同,均有量和質兩個衡量特徵,即熱力學中的第一定律和第二定律。
Ⅲ 存儲技術的分類
網路存儲技術(NetworkStorageTechnologies)是基於數據存儲的一種通用網路術語。網路存儲結構大致分為3種:直連式存儲(DirectAttachedStorage,DAS)、網路存儲設備(NetworkAttachedStorage,NAS)和存儲網路(StorageAreaNetwork,SAN)。
1.DAS
DAS是一種直接與主機系統相連接的存儲設備,如作為伺服器的計算機內部硬體驅動。到目前為止,DAS仍是計算機系統中最常用的數據存儲方法。DAS英文全稱是DirectAttachedStorage,中文翻譯成「直接附加存儲」。顧名思義,在這種方式中,存儲設備是通過電纜(通常是SCSI介面電纜)直接連接到伺服器的。I/O(輸入/輸出)請求直接發送到存儲設備。DAS也可稱為伺服器附加存儲(Server-AttachedStorage,SAS)。它依賴於伺服器,其本身是硬體的堆疊,不帶有任何存儲操作系統。
2.NAS
NAS的中文意思是「網路附加存儲」。按字面意思簡單地理解就是連接在網路上,具備資料存儲功能的裝置,因此也稱為「網路存儲器」或者「網路磁碟陣列」。從結構上講,NAS是功能單一的精簡型計算機,因此在架構上不像個人計算機那麼復雜,在外觀上就像家電產品,只需電源與簡單的控制鈕。
NAS是一種專業的網路文件存儲及文件備份設備,它是基於LAN(區域網)的,按照TCP/IP協議進行通信,以文件的I/O方式進行數據傳輸。在LAN環境下,NAS已經完全可以實現異構平台之間的數據級共享,比如NT、Unix等平台的共享。
一個NAS系統包括處理器、文件服務管理模塊和多個硬碟驅動器(用於數據的存儲)。NAS可以應用在任何網路環境當中。主伺服器和客戶端可以非常方便地在NAS上存取任意格式的文件,包括SMB格式(Windows)、NFS格式(Unix,Linux)和CIFS(CommonInternetFileSystem)格式等。
3.SAN
SAN是指存儲設備相互連接且與一台伺服器或一個伺服器群相連的網路。其中的伺服器用作SAN的接入點。在有些配置中,SAN也與網路相連。SAN將特殊交換機當作連接設備,這些特殊交換機看起來很像常規的乙太網絡交換機,是SAN中的連通點。SAN使得在各自網路上實現相互通信成為可能,同時帶來了很多有利條件。
具體來說,SAN是一種通過光纖集線器、光纖路由器、光纖交換機等連接設備將磁碟陣列、磁帶等存儲設備與相關伺服器連接起來的高速專用子網。SAN由3個基本的組件構成:介面(如SCSI、光纖通道、ESCON等)、連接設備(交換設備、網關、路由器、集線器等)和通信控制協議(如IP和SCSI等)。這3個組件再加上附加的存儲設備和獨立的SAN伺服器,就構成一個SAN系統。SAN提供一個專用的、高可靠性的基於光通道的存儲網路,SAN允許獨立地增加存儲容量,也使得管理及集中控制(特別是對於全部存儲設備都集群在一起的時候)更加簡化。而且,光纖介面提供了10km的連接長度,這使得物理上分離的遠距離存儲變得更容易。
Ⅳ 怎樣貯存太陽熱能
太陽能的採集受天氣影響,而太陽能的貯存更是不易。如何貯存太陽能,各國科學家想了許多辦法。1981年,芬蘭在凱拉瓦地區建造了一座太陽能村,採用地下岩石洞貯熱技術,把收集到的太陽熱能儲蓄起來,以備使用。
太陽能村的建築面積約67825平方米,有44幢小樓房組成。它的供熱系統的組成部分有2個:一個是太陽熱能收集器。表層是玻璃,里層是黑色薄鋁片吸熱層,總平面11000平方米。另一個是冷水池和熱水庫。冷水池容1500立方米,熱水庫容11000立方米。當收集器吸收了太陽熱後,傳導到冷水池的水中,把水加熱,再流進熱水庫貯存起來。需用時,打開熱水泵就可以了。熱水庫是由開鑿的地下岩石洞而成的,能長期保溫。據測定,這座太陽能村全年供熱中,有75%是從太陽熱能獲得的,只有25%才是用電加熱的。
日本科學家創造出一種能夠像罐頭一樣將太陽能儲存備用的方法。他們採用的儲能物質是由烴類及甲基和氰化物組成的。這種物質能把太陽能儲存數年而不會消失,每千克可儲存418.68焦的熱量,足以把1000克水燒熱到100℃。這種物質吸收熱量後,會改變結構,成為透明狀。使用時只需要加入一種含有銀鹽的催化劑就可釋放出熱量,裝置能反復使用。這樣,就找到了一種把夏天的熾熱移入酷寒的冬天使用的辦法。
Ⅳ 存儲熱量,什麼材料能大量存儲熱能呢馬上就到冬季了,把夏天的熱能存到冬季用,多好啊
這個主意非常好!關於儲能的技術,目前大家都在研究,包括特斯拉在內,有很多辦法,但還不是最好,例如特斯拉的能量牆技術,也就是電池板,把白天吸收的太陽能儲存等到晚上使用,還有電容儲能等等。一旦儲能技術成熟,對人類的影響將是巨大的。
Ⅵ 存儲器技術指標有哪四種
存儲器是具有「記憶」功能的設備,它用具有兩種穩定狀態的物理器件來表示二進制數碼 「0」和「1」,這種器件稱為記憶元件或記憶單元。記憶元件可以是磁芯,半導體觸發器、 MOS電路或電容器等。 位(bit)是二進制數的最基本單位,也是存儲器存儲信息的最小單位,8位二進制數稱為一 個位元組(Byte),可以由一個位元組或若干個位元組組成一個字(Word)在PC機中一般認為1個或2個位元組組成一個字。若干個憶記單元組成一個存儲單元,大量的存儲單元的集合組成一個 存儲體(MemoryBank)。為了區分存儲體內的存儲單元,必須將它們逐一進行編號,稱為地址。地址與存儲單元之間一一對應,且是存儲單元的唯一標志。應注意存儲單元的地址和它裡面存放的內容完全是兩 回事。 根據存儲器在計算機中處於不同的位置,可分為主存儲器和輔助存儲器。在主機內部,直接 與CPU交換信息的存儲器稱主存儲器或內存儲器。在執行期間,程序的數據放在主存儲器內。各個存儲單元的內容可通過指令隨機讀寫訪問的存儲器稱為隨機存取存儲器(RAM)。另一種存儲器叫只讀存儲器(ROM),裡面存放一次性寫入的程序或數據,僅能隨機讀出。RAM和ROM共同分享主存儲器的地址空間。RAM中存取的數據掉電後就會丟失,而掉電後ROM中 的數據可保持不變。因為結構、價格原因,主存儲器的容量受限。為滿足計算的需要而採用了大容量的輔助存儲 器或稱外存儲器,如磁碟、光碟等.存儲器的特性由它的技術參數來描述。 存儲容量:存儲器可以容納的二進制信息量稱為存儲容量。一般主存儲器(內存)容量在幾十K到幾十M位元組左右;輔助存儲器(外存)在幾百K到幾千M位元組。 存取周期:存儲器的兩個基本操作為讀出與寫入,是指將信息在存儲單元與存儲寄存器(MDR)之間進行讀寫。存儲器從接收讀出命令到被讀出信息穩定在MDR的輸出端為止的時間間隔,稱為取數時間TA;兩次獨立的存取操作之間所需的最短時間稱為存儲周期TMC。半導 體存儲器的存取周期一般為60ns-100ns。 存儲器的可*性:存儲器的可*性用平均故障間隔時間MTBF來衡量。MTBF可以理解為兩次故障之間的平均時間間隔。MTBF越長,表示可*性越高,即保持正確工作能力越強。 性能價格比:性能主要包括存儲器容量、存儲周期和可*性三項內容。性能價格比是一個綜合性指標,對於不同的存儲器有不同的要求。對於外存儲器,要求容量極大,而對緩沖存儲器則要求速度非常快,容量不一定大。因此性能/價格比是評價整個存儲器系統很重要的 指標。
Ⅶ 電能在生活中是怎樣儲存的
電能不能直接儲存,只能先通過能量形式轉換,以其它的形式儲存起來,使用時再轉化成電能,或者直接利用。目前電能主要以下列形式貯存。化學能:通過蓄電池,把電能以化學能形式儲存起來,使用時化學能釋放出電能。蓄電池必須滿足壽命長、高密度、無毒無腐蝕、操作方便等要求,因而最有希望的是鋰電池,其次是鈉—硫磺電池,鋅—氯電池,鋅—溴電池等。而鉛電池因存貯效率低、能量密度低、管理費用高等缺點將日益被淘汰。大型鋰電池機組可用於電力負荷調平,即夜間貯電,白天放電。電池驅動汽車即將取代現在的燃油汽車。熱能:把夜間的余電通過蓄熱器以高溫熱或者冷熱貯存起來。由於將熱能轉換電能時造成能量質量的降低,因此直接以熱的形式再利用情況較多。勢能:即所謂的抽水發電。夜間驅動電動水泵,把水抽向高處的水池,把電能以勢能形式儲存起來;白天用電高峰時,高處的水落下推動水輪發電機再轉換成電能。電能的存儲方式主要可分為機械儲能、電磁儲能、電化學儲能和相變儲能等。機械儲能主要有抽水蓄能、壓縮空氣儲能和飛輪儲能等;電磁儲能包括超導磁儲能和超級電容器儲能等;電化學儲能主要有鉛酸蓄電池、鈉硫電池、液流電池和鋰離子電池儲能;相變儲能包括冰蓄冷儲能、熱電相變蓄熱儲能等。目前,大規模儲能技術應用水平與電力系統的巨大需求之間還存在較大差距。適合新能源接入應用的儲能技術主要是抽水蓄能、壓縮空氣儲能和電化學儲能。抽水蓄能技術相對成熟,而其他儲能技術還處於試驗示範階段甚至初期研究階段,其中鈉硫電池、液流電池、鋰離子電池等新型電化學儲能技術水平進步較快,具有巨大的發展潛力和廣泛的應用前景。
Ⅷ 儲存太陽能的方法有哪些
地面上接受到的太陽能受氣候、晝夜、季節的影響,具有間斷性和不穩定性。如果可以把太陽能儲存起來,就像水庫把水積蓄起來發電一樣,將是一個很不錯的辦法。因此,對於大規模利用太陽能的人來說把分散的太陽能儲存起來變得很重要。太陽能可以直接儲存,但是儲存的能量有限。如果想有效儲存太陽能,必須把太陽能轉換成其他形式儲存。目前由於技術所限,大容量、長時間、經濟地儲存太陽能還比較困難。實際上,儲存太陽能的道理比較簡單,比如我們在日常生活當中,用暖水瓶來保存熱水,就是一種對熱量的儲存。目前,儲存太陽能的方法主要有以下幾種。
一、直接儲存太陽能
我國東北地區有一種暖牆,用土坯、磚或混凝土砌成,牆裡面中空,牆的下面是火爐。在寒冷的冬天,點燃火爐,火爐的煙經過暖牆排到室外,暖牆被加熱之後,熱量儲存在暖牆里,需要十幾個小時之後才會變涼。這樣白天燒火爐,解決了夜間取暖問題。北方地區的火炕,也起到儲存熱量的作用。同樣道理,利用蓄熱材料也可實現太陽能的直接儲存。太陽能的直接儲存分為短期儲存和長期儲存兩類。短期儲存可以把太陽能儲存幾個小時或者幾天;長期儲存可以把太陽能儲存幾個月之久。例如太陽房的砂石,就可以起到短期儲存太陽能的作用,夜間使用的能量就是白天吸收太陽輻射能量,用於。
太陽池對太陽能的儲存就屬於長期儲存。太陽池是一種具有一定鹽濃度梯度的鹽水池,能用於採集和儲存太陽能。太陽光照射到太陽池的底部,太陽池底部的高濃度鹽水吸收太陽光的熱量之後,因為含鹽的水密度大,不會和上面的水發生對流,這樣高溫的水始終保存在水池的底部。另外,水池上部的清水像一層厚厚的玻璃,把水池底部的長波輻射阻擋回去,使水池的熱量不會流失。這樣,太陽能就可以在太陽池中被長期儲存了。
在實際應用中,水、沙、石子、土壤等都可作為儲能材料,但儲能有限。其中水的比熱容最大,應用較多。在太陽能低溫儲存中常用含結晶水的鹽類儲能,就是應用這個原理製造的太陽池。但在使用中要解決過冷和分層問題,以保證工作溫度和使用壽命。太陽能中溫儲存溫度一般在100℃以上、500℃以下,一般在300℃左右。可以作為中溫儲存的材料有高壓熱水、有機流體、共晶鹽等。太陽能高溫儲存溫度一般在500℃以上,目前正在試驗的材料有金屬鈉、熔融鹽等。1000℃以上極高溫儲存,可以採用氧化鋁和氧化鍺耐火球。
二、轉化為電能儲存
把太陽能轉變為其他的能是比直接儲存更先進的辦法,這也是目前比較常見的做法。比如利用太陽能發電,把發出的電輸入蓄電池進行儲存。常用的是蓄電池,正在研究開發的是超導儲能。世界上鉛酸蓄電池的發明已有100多年的歷史,它利用化學能和電能的可逆轉換實現充電和放電。鉛酸蓄電池價格較低,但使用壽命短,重量大,需要經常維護。
近來開發成功少維護、免維護的鉛酸蓄電池,使其性能有一定提高。目前,與光伏發電系統配套的儲能裝置大部分為鉛酸蓄電池。鎳—銅、鎳—鐵鹼性蓄電池使用維護方便,壽命長,重量輕,但價格較貴,一般在儲能量小的情況下使用。現有的蓄電池儲能密度較低,難以滿足大容量、長時間儲存電能的要求。最新開發的蓄電池還有銀鋅電池、鉀電池、鈉硫電池等。某些金屬或合金在極低溫度下成為超導體,理論上電能可以在一個超導無電阻的線圈內儲存無限長的時間。這種超導儲能不經過任何其他能量轉換直接儲存電能,效率高,啟動迅速,可以安裝在任何地點,尤其是在消費中心附近,不產生任何污染,但目前超導儲能在技術上還不是很成熟,需要繼續研究開發。
此外,也可以利用太陽能提水儲能,白天利用太陽能把水從低處提到高處的蓄水池中,夜裡從蓄水池放水,利用水的落差進行發電,就實現太陽能儲存了。
三、太陽能的化學儲存
利用化學反應物吸收太陽熱量,然後再通過化學反應放出熱量,也是一種很好的辦法。這種儲能方式有不少優點,比如儲熱量大,體積小,重量輕,化學反應產物可分離儲存,需要時才發生放熱反應,儲存時間長等。化學儲能的要求比較嚴格,真正能用於儲熱的化學反應必須滿足以下條件:反應可逆性好,無副反應;反應迅速;反應生成物易分離且能穩定儲存;反應物和生成物無毒、無腐蝕、無可燃性;反應放熱量大,反應物價格較低等。對化學反應儲存熱能尚需進行深入研究,一時難以實用。
四、轉化為氫能儲存
儲存太陽能除了以上辦法之外,還有一個好辦法就是把太陽能轉化為氫能儲存起來。氫能是一種高品位能源。太陽能可以通過分解水或其他途徑轉換為氫能,氫可以大量、長時間儲存。它能以各種形態或化合物(如氨、甲醇等)形式儲存。氣相儲存儲氫量少時,可以採用常壓濕式氣櫃、高壓容器儲存;大量儲存時,可以儲存在地下儲倉、由不漏水土層覆蓋的含水層、鹽穴和人工洞穴內。液相儲存具有較高的單位體積儲氫量,但蒸發損失大。將氫氣轉化為液氫需要進行氫的純化和壓縮,正氫—仲氫轉化,最後進行液化。固相儲氫是利用金屬氫化物固相儲氫,儲氫密度較高,安全性好。目前,一般能滿足固相儲氫要求的材料主要是稀土系合金和鈦系合金。金屬氫化物儲氫技術研究已有30餘年歷史,取得了不少成果,但仍有許多問題有待研究解決。我國對金屬氫化物儲氫技術進行了多年研究,取得一些成果,目前研究開發工作正在深入。
五、轉化為機械能儲存
太陽能轉換為熱能,推動熱機壓縮空氣,能夠儲存太陽能。飛輪儲能是機械能儲存中最受人關注的。20世紀50年代,就有利用高速旋轉的飛輪儲能的設想,但一直沒有突破性進展。近年來,由於高強度碳纖維和玻璃纖維的出現,以及電磁懸浮、超導磁浮技術的發展,使飛輪轉速大大提高,增加了單位質量的動能儲存量。
六、塑晶儲存
美國在1984年推出一種塑晶家庭取暖材料。塑晶學名新戊二醇,它和液晶相似,有晶體的三維周期性,但力學性質像塑料。它能在恆定溫度下儲熱和放熱,塑晶在恆溫44℃時,白天吸收太陽能而儲存熱能,晚上則放出白天儲存的熱能。目前我國對塑晶也進行了一些實驗研究,但一直還沒實際應用。
七、太陽能-生物質能轉換
光合作用是植物、藻類和某些細菌利用葉綠素,在可見光的照射下,將二氧化碳和水轉化為有機物,並釋放出氧氣的生化過程。通過植物葉片的光合作用,太陽能把二氧化碳和水合成有機物,並釋放出氧氣。地球上最大規模轉換太陽能的過程就是光合作用了。我們現在大量應用的石油、煤炭都是遠古光合作用固定的太陽能。雖然光合作用對太陽能的轉換率很低,但是可以通過利用荒山荒地種植能源作物來間接擴大對太陽能的轉換。
Ⅸ 電力調峰及電熱余熱存儲技術有哪些
摘要 抽水蓄能電廠改發電機狀態為電動機狀態,調峰能力接近200%;(2)水電機組減負荷調峰或停機,調峰依最小出力(考慮震動區)接近100%;(3)燃油(氣)機組減負荷,調峰能力在50%以上;(4)燃煤機組減負荷、啟停調峰、少蒸汽運行、滑參數運行,調峰能力分別為50%(若投油或加裝助燃器可減至60%)、100%、100%、40%;(5)核電機組減負荷調峰;(6)通過對用戶側負荷管理的方法,削峰填谷調峰。