當前位置:首頁 » 服務存儲 » 土星如何進入內部存儲
擴展閱讀
webinf下怎麼引入js 2023-08-31 21:54:13
堡壘機怎麼打開web 2023-08-31 21:54:11

土星如何進入內部存儲

發布時間: 2022-08-20 12:55:44

❶ 土星的構造

土星外圍的大氣層包括96.3%的氫和3.25%的氦,可以偵測到的氣體還有氨、乙炔、乙烷、磷化氫和甲烷。上層的雲由氨的冰晶組成,較低層的雲則由硫化氫銨(NH₄SH)或水組成。相對於太陽所含有的豐富的氦,土星大氣層中氦的豐盈度明顯低得多。
對於比氦重的元素的含量,如今所知不甚精確;但如果假設與太陽系形成時的原始豐盈度是相當的,則可估算出這些元素的總質量是地球質量的19-31倍,而且大部分都存在於土星的核心區域。 土星的上層大氣與木星相似(在相同定義的前提下),同樣都有著一些條紋;但土星的條紋比較暗淡,並且赤道附近的條紋也比較寬。從底部延展至大約10公里高處,是由水冰構成的層次,溫度大約是-23 ℃。在這之後是硫化氫氨冰的層次,延伸出另外的50公里,溫度大約在-93 ℃,在這之上是80公里的氨冰雲,溫度大約是-153 ℃。接近頂部,在雲層之上200-270千米是可以看見的雲層頂端,由數層氫和氦構成的大氣層。 土星的風速是太陽系中最高的,航海家計劃的數據顯示土星的東風最高可達500m/s(1,800公里/時)。直到航海家探測器飛越土星,比較纖細的條紋才被觀測到。然而從那之後,地基望遠鏡也被改善到在通常情況下都能夠觀察到土星的這些細紋。
土星的大氣層通常都很平靜,偶爾會出現一些持續較長時間的長圓形特徵,以及其他在木星上常常出現的特徵。1990年,哈柏太空望遠鏡在土星的赤道附近觀察到一朵極大的白雲,是在航海家與土星遭遇時未曾看見的,在1994年又觀察到另一朵較小的白雲風暴。1990年的白雲是大白斑的一個例子,這是在每一個土星年(大約30個地球年),當土星北半球夏至的時候所發生的獨特但短期的現象。之前的大白斑分別出現在1876、1903、1933和1960年,並且以1933年的最為著名。如果這個周期能夠持續,下一場大風暴將在大約2020年發生。
來自卡西尼號太空船的最新圖像顯示,土星的北半球呈現與天王星相似的明亮藍色(見下圖)。這種藍色非常可能是由瑞利散射造成的,但因為當時土星環遮蔽住了北半球,因此從地球上無法看見這種藍色。 天文學家通過分析紅外線影像發現土星有一個「溫暖」的極地漩渦,這種特徵在太陽系內是獨一無二的。天文學家認為這個點是土星上溫度最高的點,土星上其他各處的溫度是-185 ℃,而該漩渦處的溫度則高達-122 ℃。
在航海家1號的影像中最先被注意到的是一個長期出現在78°N附近,圍繞著北極的六邊形漩渦。不同於北極,哈勃太空望遠鏡所拍攝到的南極區影像有明顯的「噴射氣流」,但沒有強烈的極區漩渦,也沒有「六邊形的駐波」。但是,NASA報告卡西尼號在2006年11月觀測到一個位於南極像颶風的風暴,有著清晰的眼壁。這是很值得注意的觀測報告,因為在過去除了地球之外,沒有在任何的行星上觀測到眼壁雲(包括伽利略號太空船在木星的大紅斑上都未能發現眼壁雲)。
在北極的六邊形中每一邊的直線長度大約是13800 公里,整個結構以10h39m24s自轉,與行星的無線電波輻射周期一樣,這也被認為是土星內部的自轉周期。這個六邊形結構像大氣層中可見的其他雲彩一樣,在經度上沒有移動。
這個現象的規律性的起源仍在猜測之中,多數的天文學家認為是在大氣層中某種形式的駐波,但是六邊形也許是一種新型態的極光。在實驗室的流體轉動桶內已經模擬出了多邊型結構。
從六角風暴辨土星一天的時長

土星北極點的上方存在著和木星表面的大紅斑一樣令人著迷的景象——因為一個特殊的急流而持續存在的六角形風暴。土星上一天的時間很短暫,2013,行星科學家認為,六角形風暴的循環能基本准確地反映出土星一天的時長:10小時39分23秒。與其他的氣體巨星一樣,土星缺少堅實的地表,因此科學家無法利用其地表測量它的自轉周期。此外,土星表層大氣在赤道附近的運動速度也比其在極點附近的運動速度快。
許多行星科學家利用磁場釋放出的無線電推算天體的自轉周期,因為科學家假設這些無線電是從星球的深層內部釋放出來的,那裡的自轉周期更加穩定。然而,對於土星而言,這種推測方法遇到了阻礙:從土星南北半球釋放出的無線電有15分鍾左右的時間差。
相對而言,六角形風暴的循環更加穩定,因此可以作為推斷自轉周期的一個關鍵因素。研究者將卡西尼號土星探測器拍攝到的時間跨度為5年半的圖像結合在一起加以分析,發現六角形風暴的循環周期幾乎不會發生變化。這一發現暗示:可蔓延數百公里的六角形風暴與星球的內部關系密切,因此它是土星真實自轉速度的一個有效標示。 主條目:土星磁層
土星有一個簡單的具有對稱形狀的內在磁場——一個磁偶極子。磁場在赤道的強度為0.2 高斯(20 µT),大約是木星磁場的20分之一,比地球的磁場微弱一點;由於強度遠比木星的微弱,因此土星的磁層僅延伸至土衛六軌道之外。磁層產生的原因很有可能與木星相似——由金屬氫層(被稱為「金屬氫發電機」)中的電流引起。與其他的行星一樣,土星磁層會受到來自太陽的太陽風內的帶電微粒影響而產生偏轉。衛星土衛六的軌道位於土星磁層的外圍,並且土衛六的大氣層外層中的帶電粒子提供了等離子體。

❷ 在世嘉土星游戲機上打游戲,怎麼存儲進度

上面有個卡帶的插口,上面插一個記憶卡就可以存進度了,上淘寶可以買得到的。
另外不插卡也可以存進度的,可能你那裡面記錄存滿了,你要進去刪除了老的記錄才能存,
好多年前的事了,都記不得怎麼進菜單了(九個球的畫面),開機時好像是同時按住手柄中間的選擇鍵和開始鍵,不行的話按住ABC再加開始鍵或是你自己慢慢試試吧。

❸ 土星由大量氣體組成,如果人進入土星中心會怎麼樣


身為八大行星之一的土星一直備受人們關注。土星屬於氣態巨行星,也就是說土星整體都是由氣體組成,唯有內核是固態的。土星的氣體的主要成分是氫,還含有部分的氦以及其他少量元素。





這就是全部的「土星之旅」的過程了,通過推算的過程可以看出,以目前天文界所具備的航天設備來說,如果人類強行登陸土星中心的話,就算有再多的防護手段也無法抵擋那裡的極端條件,雖然在這一過程中可以看到很多神奇的畫面,但是會因此付出生命的代價,是一個沒有歸途的旅程。


到目前為止,除了地球,人類沒有在太陽系內部發現適合人類居住的星球,所以我們要珍惜現在所擁有的一切,愛護、保護地球——我們唯一的生存家園。

❹ 關於土星的資料

土星是離太陽第六遠的行星,也是九大行星中第二大的行星:

公轉軌道: 距太陽 1,429,400,000 千米 (9.54 天文單位)
衛星直徑: 120,536 千米 (赤道)
質量: 5.68e26 千克

在羅馬神話中,土星(Saturn)是農神的名稱。希臘神話中的農神Cronus是Uranus(天王星)和該亞的兒子,也是宙斯(木星)的父親。土星也是英語中「星期六」(Saturday)的詞根。(請參見 附錄 4).

土星在史前就被發現了。伽利略在1610年第一次通過望遠鏡觀察到它,並記錄下它的奇怪運行軌跡,但也被它給搞糊塗了。早期對於土星的觀察十分復雜,這是由於當土星在它的軌道上時每過幾年,地球就要穿過土星光環所在的平面。(低解析度的土星圖片所以經常有徹底性的變化。)直到1659年惠更斯正確地推斷出光環的幾何形狀。在1977年以前,土星的光環一直被認為是太陽系中唯一存在的;但在1977年,在天王星周圍發現了暗淡的光環,在這以後不久木星和海王星周圍也發現了光環。

先鋒11號在1979年首先去過土星周圍,同年又被旅行家1號和2號訪問。現在正在途中的卡西尼飛行器將在2004年到達土星。

通過小型的望遠鏡觀察也能明顯地發現土星是一個扁球體。它赤道的直徑比兩極的直徑大大約10%(赤道為120,536千米,兩極為108,728千米),這是它快速的自轉和流質地表的結果。其他的氣態行星也是扁球體,不過沒有這樣明顯。

土星是最疏鬆的一顆行星,它的比重(0.7)比水的還要小。

與木星一樣,土星是由大約75%的氫氣和25%的氦氣以及少量的水,甲烷,氨氣和一些類似岩石的物質組成。這些組成類似形成太陽系時,太陽星雲物質的組成。

土星內部和木星一樣,由一個岩石核心,一個具有金屬性的液態氫層和一個氫分子層,同時還存在少量的各式各樣的冰。

土星的內部是劇熱的(在核心可達12000開爾文),並且土星向宇宙發出的能量比它從太陽獲得的能量還要大。大多數的額外能量與木星一樣是由Kelvin-Helmholtz原理產生的。但這可能還不足以解釋土星的發光本領,一些其他的作用可能也在進行,可能是由於土星內部深層處氦的「沖洗」造成的。

木星上的明顯的帶狀物 在土星上則模糊許多,在赤道附近變得更寬。由地球無法看清它的頂層雲,所以直到旅行者飛船偶然觀測到,人們才開始對土星的大氣循環情況開始研究。土星與木星一樣,有長周期的橢圓軌道(右側圖象中心的大紅斑)以及其他的大致特徵。在1990年,哈博望遠鏡觀察到在土星赤道附近一個非常大的白色的雲,這是當旅行者號到達時並不存在的;在1994年,另一個比較小的風暴被觀測到。(左圖)

從地球上可以看到兩個明顯的光環(A和B)和一個暗淡的光環(C),在A光環與B光環之間的間隙被稱為「卡西尼部分」。一個在A光環的外圍部分更為暗淡的間隙被稱為「Encke Gap」(但這有點用詞不當,因為它可能從沒被Encke看見過)。旅行者號發送回的圖片顯示還有四個暗淡的光環。土星的光環與其他星的光環不同,它是非常明亮的。(星體反照率為0.2 - 0.6)

盡管從地球上看光環是連續的,但這些光環事實上是由無數在各自獨立軌道的微小物體構成的。它們的大小的范圍由1厘米到幾米不等,也有可能存在一些直徑為幾公里的物體。

土星的光環特別地薄,盡管它們的直徑有250,000千米甚至更大,但是它們最多隻有1.5千米厚。盡管它們有給人深刻印象的明顯的形象,但是在光環中只有很少的物質--如果光環被壓縮成一個物件,它最多隻可能是100千米寬。

光環中的微粒可能主要是由水凝成的冰組成,但它們也可能是由冰裹住外層的岩石狀微粒。

旅行者號證實令人迷惑的半徑的不均勻性在光環中的確存在,這被叫做「spokes(輔條)」,這是首先由一個業余天文學家報道的(左圖)。它們的自然本性帶給了我們一個謎,但使得我們有了弄清土星磁場區的線索。

土星最外層的光環,F光環,是由一些更小的光環組成的繁雜構造,它的一些「繩結(Knots)」是很明顯的。科學家們推測這些所謂的結可能是塊狀的光環物質或是一些迷你的月亮。這些奇怪的織狀物在旅行者1號發回的圖象中很明顯,(右圖)但它們在旅行者2號發回的圖象中看不見,可能是因為後者拍到的光環部分的成分與前者的略有不同。

土星的衛星之間和光環系統中有著復雜的潮汐共振現象:一些衛星,所謂的「牧羊衛星」(比如土衛十五,土衛十六和土衛十七)對保持光環形狀有著明顯的重要性;土衛一看來應對卡西尼部分某種物質的缺乏負責任,這與小行星帶中Kirkwood gaps遇到的情況類似;土衛十八處於Encke Gap中。整個系統太復雜,我們所掌握的還很貧乏。

土星(以及其他類木行星)的光環的由來還不清楚,盡管它們可能自從形成時就有光環,但是光環系統是不穩定的,它們可能在前進過程中不斷更新,也可能是比較大的衛星的碎片。

像其他類木行星一樣,土星有一個極有意義的磁場區。

在無盡的夜空中,土星很容易被眼睛看到。盡管它可能不如木星那麼明亮,但是它很容易被認出是顆行星,因為它不會象恆星那樣「閃爍」。光環以及它的衛星能通過一架小型業余天文望遠鏡觀察到。Mike Harvey的行星尋找圖表指出此時水星在天空中的位置(及其他行星的位置),再由Starry Night這個天象程序作更多更細致的定製。

土星的衛星
土星有18顆被命名的衛星,比其他任何行星都多。還有一些小衛星還將被發現。

在那些旋轉速度已知的衛星中,除了土衛九和土衛七以外都是同步旋轉的。
有三對衛星,土衛一-土衛三,土衛二-土衛四和土衛六-土衛七有萬有引力的互相作用來維持它們軌道間的固定關系。土衛一公轉周期恰巧是土衛三的一半,它們可以說是在1:2共動關系中,土衛二-土衛四的也是1:2; 土衛六-土衛七的則是3:4關系。
除了18顆被命名的衛星以外,至少已有一打以上已經被報道了,並且已經給予了臨時的名稱。

❺ 太陽系八大行星的內部都是什麼,可以和大家科普一下嗎

太陽系中的每一顆行星都是獨一無二的,它們都是有各種不同的物質構成,那麼你知道它們的核心是什麼嗎?太陽的內核非常的大,占整個半徑的1/4四周是氣體和變漿,巨大的體積賦予了它超高的重力,這使得氫融合了氦,讓溫度達到了1500萬攝氏度,同時核心的溫度傳遞到對流層需要17年的時間。最讓人意想不到的大概就是太陽也是擁有大氣層的,也就是我們常說的日冕,它的溫度超過了200萬攝氏度,比太陽表面溫度還要高出很多。