『壹』 計算題:用2K×4位/片的存儲晶元組成容量為8K×8位的存儲器,地址匯流排A15~A0(低)。
需用8塊存儲晶元,A9~A0是連入各存儲晶元的地址線。
片選信號的邏輯式:CS0 =( A11 A10 )、CS1 = ( A11 A10 )、CS2 =( A11 A10 )、CS3 = ( A11 A10 )
總片數=總容量/(容量/片)
例:存儲器容量為8K×8b,若選用2114晶元(1K×4b),則需要的晶元數為:(8K×8b)/(1K×4b)=16(片)
(1)位擴展
只在位數方向擴展(加大字長),而晶元的字數和存儲器的字數是一致的。即b前面不一樣,K前面保持一樣。
例:用64K×1b的SRAM晶元組成64K×8b的存儲器,所需晶元數為:(64K×8b)/(64K×1b)=8(片)
(2)字擴展
僅在字數方向擴展,而位數不變。即K前面不一樣,b前面保持一樣。
例:用16K×8b的SRAM組成以64K×8b的存儲器,所需晶元數為:(64K×8b)/(16K×8b)=4(片)。
(1)片式存儲晶元擴展閱讀
存儲器地址解碼方法
(1)線選法
用高位地址直接作為晶元的片選信號,每一根地址選通一塊晶元(無位擴展情況)。
A13-A10作為片選,因為有反向器,所以拿第一塊晶元舉例,A10取1,經過反向器變為0,再變為1,其他A11-A13都為0。
(2)全解碼法
除了將地址匯流排的低位地址直接與晶元的地址線相連之外,其餘高位地址全部接入解碼器,由解碼器的輸出作為各晶元的片選信號。
Y0-Y7都是低電平有效,即=0時才有效。同樣,有反向器。
(3)部分解碼法
將高位地址線中的一部分進行解碼,產生片選信號。該方法適用於不需要全部地址空間的定址能力,但採用線選法地址線又不夠用的情況。
『貳』 常用存儲器片選控制方法有哪幾種它們各有什麼優缺點
行選擇,部分解碼,全部解碼。
線路選擇電路簡單,但會造成地址Z棧、空間利用率低和特定編程不宜編織。
全解碼具有較高的晶元利用率和無地址棧,但電路比選線方法復雜得多。
部分解碼介於兩者之間,也可以產生一定程度的地址棧,但存在一個相對相鄰的地址空間。
(2)片式存儲晶元擴展閱讀
存儲器是用來存儲程序和各種數據信息的存儲器。記憶可分為兩類:初級記憶(簡稱初級記憶或BAI)和輔助記憶(簡稱輔助記憶或外部記憶)。它是主存,直接與CPU交換信息。
在主存儲器中收集存儲單元的載體稱為存儲體。存儲器中的每個單元都可以保存由二進制代碼表示的一串信息。信息的總比特數稱為存儲單元的字長。存儲單元的地址與存儲在其中的信息相對應。存儲單元的位置只有一個固定地址,存儲在其中的信息可以被替換。
『叄』 在對存儲器晶元進行片選時,全解碼方式、部分解碼方式和線選方式各有何特點
若cpu的定址空間等於存儲器晶元的定址空間,可直接將高低位地址線相連即可,這種方式下,可用單條讀寫指令直接定址,定址地址與指令中的地址完全吻合。
若cpu的定址空間大於存儲器晶元的定址空間,可直接將高低位地址線相連即可,cpu剩餘部分高位地址線,這種方式下,可用單條讀寫指令直接定址,未連接的地址線在指令中可以以0或1出現,即有多個地址對應每個存儲器空間,可在指令中將這些位默認為零。
若cpu的定址空間小於存儲器晶元的定址空間,可將其它io口連接剩餘存儲器高位地址線,定址前,需設置好這些io口。
當存在多片存儲器,且希望節省cpu的io口時,需要外加解碼電路。比如說,存儲器地址線為13根,共8片存儲器,可用74ls138連接cpu的高3位地址線,74ls38的8位輸出分別連接8片存儲器,讀寫時,定址地址與指令中的地址完全吻合。
上一種情況中,若希望簡化外圍電路,也可用其餘埠的8個io分別連接8片存儲的片選,其定址方式與第三種情況類似。
『肆』 一片4k的存儲晶元,若是SRAM需要多少地址線,若是DRAm(採用地址分兩次打入方式)需要多少地址線。在線等。。
2^12 = 4KB,SRAM需要12根地址線。
DRAM地址分兩次傳送,一次行地址,一次列地址,所以最少要12/2 = 6根,但不一定只有6根,可以是4 8或2 10等。
『伍』 存儲晶元包括
存儲晶元,是嵌入式系統晶元的概念在存儲行業的具體應用。因此,無論是系統晶元還是存儲晶元,都是通過在單一晶元中嵌入軟體,實現多功能和高性能,以及對多種協議、多種硬體和不同應用的支持。按照不同的技術,存儲器晶元可以細分為EPROM、EEPROM、SRAM、DRAM、FLASH、MASK ROM和FRAM等。
存儲器技術是一種不斷進步的技術,隨著各種專門應用不斷提出新的要求,新的存儲器技術也層出不窮,每一種新技術的出現都會使某種現存的技術走進歷史,因為開發新技術的初衷就是為了消除或減弱某種特定存儲器產品的不足之處。
例如,快閃記憶體技術脫胎於EEPROM,它的一個主要用途就是為了取代用於PC機BIOS的EEPROM晶元,以便方便地對這種計算機中最基本的代碼進行更新。 盡管目前非揮發性存儲器中最先進的就是快閃記憶體,但技術卻並未就此停步。
生產商們正在開發多種新技術,以便使快閃記憶體也擁有像DRAM和SDRAM那樣的高速、低價、壽命長等特點。總之,存儲器技術將會繼續發展,以滿足不同的應用需求。就PC市場來說,更高密度、更大帶寬、更低功耗、更短延遲時間、更低成本的主流DRAM技術將是不二之選。
而在其它非揮發性存儲器領域,供應商們正在研究快閃記憶體之外的各種技術,以便滿足不同應用的需求,未來必將有更多更新的存儲器晶元技術不斷涌現。
『陸』 存儲晶元的介紹
存儲晶元是嵌入式系統晶元的概念在存儲行業的具體應用。因此,無論是系統晶元還是存儲晶元,都是通過在單一晶元中嵌入軟體,實現多功能和高性能,以及對多種協議、多種硬體和不同應用的支持。
『柒』 片選的存儲晶元的片選
存儲器往往要是由一定數量的晶元構成的。
CPU要實現對存儲單元的訪問,首先要選擇存儲晶元,即進行片選;然後再從選中的晶元中依地址碼選擇出相應的存儲單元,以進行數據的存取,這稱為字選。片內的字選是由CPU送出的N條低位地址線完成的,地址線直接接到所有存儲晶元的地址輸入端,而存儲晶元的片選信號則大多是通過高位地址解碼後產生的。
線選法:
線選法就是用除片內定址外的高位地址線直接分別接至各個存儲晶元的片選端,當某地址線信息為0時,就選中與之對應的存儲晶元。這些片選地址線每次定址時只能有一位有效,不允許同時有多位有效,這樣才能保證每次只選中一個晶元。線選法不能充分利用系統的存儲器空間,把地址空間分成了相互隔離的區域,給編程帶來了一定困難
全解碼法:
全解碼法將除片內定址外的全部高位地址線都作為地址解碼器的輸入,解碼器的輸出作為各晶元的片選信號,將它們分別接到存儲晶元的片選端,以實現對存儲晶元的選擇。全解碼法的優點是每片晶元的地址范圍是唯一確定的,而且是連續的,也便於擴展,不會產生地址重疊的存儲區,但全解碼法對解碼電路要求較高
部分解碼法:所謂部分解碼法即用除片內定址外的高位地址的一部分來解碼產生片選信號,部分解碼法會產生地址重疊。
『捌』 已知片存儲晶元2764的地址線的連接如圖所示,根據連接圖分析、回答:
1)2764存儲晶元的存儲容量是【38】--8KB。
2)此種連接採用【39】地址解碼方式--全解碼。
3)寫出該晶元的可用地址范圍:
首地址【40】H、--FC00H;
末地址【41】H。--FDFFH。
僅供參考。
『玖』 內存儲器使用的半導體存儲晶元有哪些主要類型
◆存儲晶元(IC)的分類:
內存儲器按存儲信息的功能可分為隨機存儲器RAM(RandomAccess Memory)和只讀存儲器ROM(Read Only Memory)。 ROM中的信息只能被讀出,而不能被操作者修改或刪除,故一般用來存放固定的程序,如微機的管理、監控程序,匯編程序,以及存放各種表格等。
還有一種叫做可改寫的只讀存儲器EPROM(ErasaNe Pr。Brsmmable ROM),和一般的RoM的不同點在於它可以用特殊裝置擯除和重寫它的內容,一般用於軟體的開發過程。
RAM就是我們常說的內存,它主要用來存放各種現場的輸入、輸出數據,中間計算結果,以及與外存交換信息和作堆棧用。它的存儲單元的內容按需要既可以讀出,也可以寫入或改寫。
由於RAM由電子器件組成,只能暫時存放正在運行的數據和程序,一旦關閉電源或掉電,其中的數據就會消失。RAM現在多為Mos型半導體電路,它分為靜態和動態兩種。
靜態RAM是靠雙穩態觸發器來記憶信息的;動態RAM是靠Mos電路中的柵極電容來記憶信息的。由於電容上電荷會泄漏,需要定時給予補充,所以動態RAM要設置刷新電路,但它比靜態RAM集成度高、功耗低,從而成本也低,適於作大容量存儲器。所以主內存通常採用動態RAM,而高速緩沖存儲器(Cache)則使用靜態RAM。
●存儲IC的特點,具有體積小,重量輕,引出線和焊接點少,壽命長,可靠性高,性能好等優點,同時成本低,便於大規模生產。
『拾』 半導體存儲器有幾類,分別有什麼特點
1、隨機存儲器
對於任意一個地址,以相同速度高速地、隨機地讀出和寫入數據的存儲器(寫入速度和讀出速度可以不同)。存儲單元的內部結構一般是組成二維方矩陣形式,即一位一個地址的形式(如64k×1位)。但有時也有編排成便於多位輸出的形式(如8k×8位)。
特點:這種存儲器的特點是單元器件數量少,集成度高,應用最為廣泛(見金屬-氧化物-半導體動態隨機存儲器)。
2、只讀存儲器
用來存儲長期固定的數據或信息,如各種函數表、字元和固定程序等。其單元只有一個二極體或三極體。一般規定,當器件接通時為「1」,斷開時為「0」,反之亦可。若在設計只讀存儲器掩模版時,就將數據編寫在掩模版圖形中,光刻時便轉移到硅晶元上。
特點:其優點是適合於大量生產。但是,整機在調試階段,往往需要修改只讀存儲器的內容,比較費時、費事,很不靈活(見半導體只讀存儲器)。
3、串列存儲器
它的單元排列成一維結構,猶如磁帶。首尾部分的讀取時間相隔很長,因為要按順序通過整條磁帶。半導體串列存儲器中單元也是一維排列,數據按每列順序讀取,如移位寄存器和電荷耦合存儲器等。
特點:砷化鎵半導體存儲器如1024位靜態隨機存儲器的讀取時間已達2毫秒,預計在超高速領域將有所發展。
(10)片式存儲晶元擴展閱讀:
半導體存儲器優點
1、存儲單元陣列和主要外圍邏輯電路製作在同一個硅晶元上,輸出和輸入電平可以做到同片外的電路兼容和匹配。這可使計算機的運算和控制與存儲兩大部分之間的介面大為簡化。
2、數據的存入和讀取速度比磁性存儲器約快三個數量級,可大大提高計算機運算速度。
3、利用大容量半導體存儲器使存儲體的體積和成本大大縮小和下降。