A. Java構造函數(方法)存儲在jvm哪個內存里
存放到方法區當中;
new出來的是實例對象,實例對象才是存放在堆當中;
構造函數對應的是<init>方法,方法信息隨著類載入器載入到方法區當中。
棧:
以棧幀為單位,存放的不是方法具體的結構,只是通常一個方法對應一個棧幀,對應的入棧出棧就是棧幀的入棧出棧。棧幀中有局部變數表,操作數棧,方法返回地址,動態鏈接。其中局部變數表存放局部變數,包括形參,非靜態方法默認在第一個索引存放一個this變數;操作數棧用於操作局部變數表和一些值的運算,比如讀取表中變數的值進行運算,或存放相應的值到局部變數表中;方法返回地址則是用於記錄對應方法的下一條指令的地址;動態鏈接是符號引用變成的直接引用。
堆:
存放實例對象,在jdk7開始,還存放靜態變數和字元串常量池
方法區:
存放類元信息,比如完整類名全稱,public,abstract等修飾符,實現的介面有序列表等;方法信息,比如修飾符,返回類型等;JIT代碼緩存,也就是被即時編譯器編譯後的熱點代碼,用於提高性能;域信息,也就是屬性信息,比如修飾符,類型等;運行時常量池,位元組碼文件中常量池的運行時表現,類似符號引用的記錄,不過蘊含的信息更為豐富,而且具有動態性。jdk6及以前,還存放靜態變數,運行時常量池中還存放字元串常量池,到了jdk7則移到了堆中。
B. 上次你回答了我 靜態常量 和 常量的存儲位置, 我想問一下,局部常量就是方法 中的常量 jvm是如何處理的
方法是由線程來執行的,每個線程都有一塊屬於自己的棧空間。也就是說線程創建的時候,這個棧空間也就創建了,線程銷毀時這個棧也就銷毀。這個棧的內存只有線程本身可以訪問,稱它為虛擬機棧,或者方法棧。
每當線程執行一個方法時,會在自己的方法棧中添加一個棧幀,你可以理解為放了一個東西進棧。方法結束時,這個棧幀就會出棧銷毀。eclipse調試窗口形象的描述了這個棧,你可以看到隨著方法的調用,棧幀會增多,方法執行完後棧幀就減少。當前正在執行的方法棧幀肯定是在棧的最頂部。
每一個棧幀都包含一個局部變數表用來存放局部變數,線程調用方法創建棧幀後,將this引用、方法的參數、局部變數,全部按順序依次分配在這個棧幀的局部變數表中,顯然,當方法結束後,棧幀出棧銷毀,這些局部變數也就釋放了。你在調試的時候,看到的variabel窗口中的變數,就是局部變數表中的變數,可以看到實例方法中this變數總是在最上面,然後方法的參數、方法中的局部變數依次排下來。
另外,方法中的局部變數並不叫常量,這個你要注意一下
C. 在Java JVM里,如果一個變數被聲明為final或者static, 那麼這個變數的引用以及它的值被存放在哪
static不能用在方法裡面,只能修飾類的屬性或者方法。
static修飾的變數被放在方法區,因為它屬於類變數,是類的一部分。
所有的方法中的普通變數都是在棧中的局部變數表中的,如果是引用類型的變數局部變數表會存放引用對象的地址,這個引用對象實際存儲在堆中。如果被final修飾的話代表這個引用類型的變數指向的地址無法被改變。所以final修飾的引用的地址和final修飾的基本數據類型都會放在常量池,常量池位於方法區中。
D. 哪位能描述一下 java 中內存的分區情況和各類變數在內存中的存貯情況。
Java內存分配與管理是Java的核心技術之一,一般Java在內存分配時會涉及到以下區域:
◆寄存器:我們在程序中無法控制
◆棧:存放基本類型的數據和對象的引用,但對象本身不存放在棧中,而是存放在堆中
◆堆:存放用new產生的數據
◆靜態域:存放在對象中用static定義的靜態成員
◆常量池:存放常量
◆非RAM存儲:硬碟等永久存儲空間
Java內存分配中的棧
在函數中定義的一些基本類型的變數數據和對象的引用變數都在函數的棧內存中分配。
當在一段代碼塊定義一個變數時,Java就在棧中為這個變數分配內存空間,當該變數退出該作用域後,Java會自動釋放掉為該變數所分配的內存空間,該內存空間可以立即被另作他用。
Java內存分配中的堆
堆內存用來存放由new創建的對象和數組。在堆中分配的內存,由Java虛擬機的自動垃圾回收器來管理。
在堆中產生了一個數組或對象後,還可以在棧中定義一個特殊的變數,讓棧中這個變數的取值等於數組或對象在堆內存中的首地址,棧中的這個變數就成了數組或對象的引用變數。引用變數就相當於是為數組或對象起的一個名稱,以後就可以在程序中使用棧中的引用變數來訪問堆中的數組或對象。引用變數就相當於是為數組或者對象起的一個名稱。
引用變數是普通的變數,定義時在棧中分配,引用變數在程序運行到其作用域之外後被釋放。而數組和對象本身在堆中分配,即使程序運行到使用new產生數組或者對象的語句所在的代碼塊之外,數組和對象本身占據的內存不會被釋放,數組和對象在沒有引用變數指向它的時候,才變為垃圾,不能在被使用,但仍然占據內存空間不放,在隨後的一個不確定的時間被垃圾回收器收走(釋放掉)。這也是Java比較占內存的原因。
實際上,棧中的變數指向堆內存中的變數,這就是Java中的指針!
常量池(constantpool)
常量池指的是在編譯期被確定,並被保存在已編譯的.class文件中的一些數據。除了包含代碼中所定義的各種基本類型(如int、long等等)和對象型(如String及數組)的常量值(final)還包含一些以文本形式出現的符號引用,比如:
◆類和介面的全限定名;
◆欄位的名稱和描述符;
◆方法和名稱和描述符。
虛擬機必須為每個被裝載的類型維護一個常量池。常量池就是該類型所用到常量的一個有序集和,包括直接常量(string,integer和floatingpoint常量)和對其他類型,欄位和方法的符號引用。
對於String常量,它的值是在常量池中的。而JVM中的常量池在內存當中是以表的形式存在的,對於String類型,有一張固定長度的CONSTANT_String_info表用來存儲文字字元串值,注意:該表只存儲文字字元串值,不存儲符號引用。說到這里,對常量池中的字元串值的存儲位置應該有一個比較明了的理解了。
在程序執行的時候,常量池會儲存在MethodArea,而不是堆中。
堆與棧
Java的堆是一個運行時數據區,類的(對象從中分配空間。這些對象通過new、newarray、anewarray和multianewarray等指令建立,它們不需要程序代碼來顯式的釋放。堆是由垃圾回收來負責的,堆的優勢是可以動態地分配內存大小,生存期也不必事先告訴編譯器,因為它是在運行時動態分配內存的,Java的垃圾收集器會自動收走這些不再使用的數據。但缺點是,由於要在運行時動態分配內存,存取速度較慢。
棧的優勢是,存取速度比堆要快,僅次於寄存器,棧數據可以共享。但缺點是,存在棧中的數據大小與生存期必須是確定的,缺乏靈活性。棧中主要存放一些基本類型的變數數據(int,short,long,byte,float,double,boolean,char)和對象句柄(引用)。
棧有一個很重要的特殊性,就是存在棧中的數據可以共享。假設我們同時定義:
1. inta=3;
2. intb=3;
編譯器先處理inta=3;首先它會在棧中創建一個變數為a的引用,然後查找棧中是否有3這個值,如果沒找到,就將3存放進來,然後將a指向3。接著處理intb=3;在創建完b的引用變數後,因為在棧中已經有3這個值,便將b直接指向3。這樣,就出現了a與b同時均指向3的情況。
這時,如果再令a=4;那麼編譯器會重新搜索棧中是否有4值,如果沒有,則將4存放進來,並令a指向4;如果已經有了,則直接將a指向這個地址。因此a值的改變不會影響到b的值。
要注意這種數據的共享與兩個對象的引用同時指向一個對象的這種共享是不同的,因為這種情況a的修改並不會影響到b,它是由編譯器完成的,它有利於節省空間。而一個對象引用變數修改了這個對象的內部狀態,會影響到另一個對象引用變數。
String是一個特殊的包裝類數據。可以用:
Stringstr=newString("abc");
Stringstr="abc";
兩種的形式來創建,第一種是用new()來新建對象的,它會在存放於堆中。每調用一次就會創建一個新的對象。而第二種是先在棧中創建一個對String類的對象引用變數str,然後通過符號引用去字元串常量池裡找有沒有"abc",如果沒有,則將"abc"存放進字元串常量池,並令str指向」abc」,如果已經有」abc」則直接令str指向「abc」。
比較類裡面的數值是否相等時,用equals()方法;當測試兩個包裝類的引用是否指向同一個對象時,用==,下面用例子說明上面的理論。
1.Stringstr1="abc";
2.Stringstr2="abc";
3.System.out.println(str1==str2);//true
可以看出str1和str2是指向同一個對象的。
1.Stringstr1=newString("abc");
2.Stringstr2=newString("abc");
3.System.out.println(str1==str2);//false
用new的方式是生成不同的對象。每一次生成一個。
因此用第二種方式創建多個」abc」字元串,在內存中其實只存在一個對象而已.這種寫法有利與節省內存空間.同時它可以在一定程度上提高程序的運行速度,因為JVM會自動根據棧中數據的實際情況來決定是否有必要創建新對象。而對於Stringstr=newString("abc");的代碼,則一概在堆中創建新對象,而不管其字元串值是否相等,是否有必要創建新對象,從而加重了程序的負擔。
另一方面,要注意:我們在使用諸如Stringstr="abc";的格式定義類時,總是想當然地認為,創建了String類的對象str。擔心陷阱!對象可能並沒有被創建!而可能只是指向一個先前已經創建的對象。只有通過new()方法才能保證每次都創建一個新的對象。
由於String類的immutable性質,當String變數需要經常變換其值時,應該考慮使用StringBuffer類,以提高程序效率。
1.首先String不屬於8種基本數據類型,String是一個對象。因為對象的默認值是null,所以String的默認值也是null;但它又是一種特殊的對象,有其它對象沒有的一些特性。
2.newString()和newString(」")都是申明一個新的空字元串,是空串不是null;
3.Stringstr=」kvill」;Stringstr=newString(」kvill」)的區別
示例:
1.Strings0="kvill";
2.Strings1="kvill";
3.Strings2="kv"+"ill";
4.System.out.println(s0==s1);
5.System.out.println(s0==s2);
結果為:
true
true
首先,我們要知結果為道Java會確保一個字元串常量只有一個拷貝。
因為例子中的s0和s1中的」kvill」都是字元串常量,它們在編譯期就被確定了,所以s0==s1為true;而」kv」和」ill」也都是字元串常量,當一個字元串由多個字元串常量連接而成時,它自己肯定也是字元串常量,所以s2也同樣在編譯期就被解析為一個字元串常量,所以s2也是常量池中」kvill」的一個引用。所以我們得出s0==s1==s2;用newString()創建的字元串不是常量,不能在編譯期就確定,所以newString()創建的字元串不放入常量池中,它們有自己的地址空間。
示例:
6.Strings0="kvill";
7.Strings1=newString("kvill");
8.Strings2="kv"+newString("ill");
9.System.out.println(s0==s1);
10.System.out.println(s0==s2);
11.System.out.println(s1==s2);
結果為:
false
false
false
例2中s0還是常量池中"kvill」的應用,s1因為無法在編譯期確定,所以是運行時創建的新對象」kvill」的引用,s2因為有後半部分newString(」ill」)所以也無法在編譯期確定,所以也是一個新創建對象」kvill」的應用;明白了這些也就知道為何得出此結果了。
4.String.intern():
再補充介紹一點:存在於.class文件中的常量池,在運行期被JVM裝載,並且可以擴充。String的intern()方法就是擴充常量池的一個方法;當一個String實例str調用intern()方法時,Java查找常量池中是否有相同Unicode的字元串常量,如果有,則返回其的引用,如果沒有,則在常量池中增加一個Unicode等於str的字元串並返回它的引用;看示例就清楚了
示例:
1.Strings0="kvill";
2.Strings1=newString("kvill");
3.Strings2=newString("kvill");
4.System.out.println(s0==s1);
5.System.out.println("**********");
6.s1.intern();
7.s2=s2.intern();//把常量池中"kvill"的引用賦給s2
8.System.out.println(s0==s1);
9.System.out.println(s0==s1.intern());
10.System.out.println(s0==s2);
結果為:
false
false//雖然執行了s1.intern(),但它的返回值沒有賦給s1
true//說明s1.intern()返回的是常量池中"kvill"的引用
true
最後我再破除一個錯誤的理解:有人說,「使用String.intern()方法則可以將一個String類的保存到一個全局String表中,如果具有相同值的Unicode字元串已經在這個表中,那麼該方法返回表中已有字元串的地址,如果在表中沒有相同值的字元串,則將自己的地址注冊到表中」如果我把他說的這個全局的String表理解為常量池的話,他的最後一句話,」如果在表中沒有相同值的字元串,則將自己的地址注冊到表中」是錯的:
示例:
1.Strings1=newString("kvill");
2.Strings2=s1.intern();
3.System.out.println(s1==s1.intern());
4.System.out.println(s1+""+s2);
5.System.out.println(s2==s1.intern());
結果:
1.false
2.kvillkvill
3.true
在這個類中我們沒有聲名一個」kvill」常量,所以常量池中一開始是沒有」kvill」的,當我們調用s1.intern()後就在常量池中新添加了一個」kvill」常量,原來的不在常量池中的」kvill」仍然存在,也就不是「將自己的地址注冊到常量池中」了。
s1==s1.intern()為false說明原來的」kvill」仍然存在;s2現在為常量池中」kvill」的地址,所以有s2==s1.intern()為true。
5.關於equals()和==:
這個對於String簡單來說就是比較兩字元串的Unicode序列是否相當,如果相等返回true;而==是比較兩字元串的地址是否相同,也就是是否是同一個字元串的引用。
6.關於String是不可變的
這一說又要說很多,大家只要知道String的實例一旦生成就不會再改變了,比如說:Stringstr=」kv」+」ill」+」「+」ans」;就是有4個字元串常量,首先」kv」和」ill」生成了」kvill」存在內存中,然後」kvill」又和」」生成「kvill「存在內存中,最後又和生成了」kvillans」;並把這個字元串的地址賦給了str,就是因為String的」不可變」產生了很多臨時變數,這也就是為什麼建議用StringBuffer的原因了,因為StringBuffer是可改變的。
下面是一些String相關的常見問題:
String中的final用法和理解
finalStringBuffera=newStringBuffer("111");
finalStringBufferb=newStringBuffer("222");
a=b;//此句編譯不通過
finalStringBuffera=newStringBuffer("111");
a.append("222");//編譯通過
可見,final只對引用的"值"(即內存地址)有效,它迫使引用只能指向初始指向的那個對象,改變它的指向會導致編譯期錯誤。至於它所指向的對象的變化,final是不負責的。
String常量池問題的幾個例子
下面是幾個常見例子的比較分析和理解:
Stringa="a1";
Stringb="a"+1;
System.out.println((a==b));//result=true
Stringa="atrue";
Stringb="a"+"true";
System.out.println((a==b));//result=true
Stringa="a3.4";
Stringb="a"+3.4;
System.out.println((a==b));//result=true
分析:JVM對於字元串常量的"+"號連接,將程序編譯期,JVM就將常量字元串的"+"連接優化為連接後的值,拿"a"+1來說,經編譯器優化後在class中就已經是a1。在編譯期其字元串常量的值就確定下來,故上面程序最終的結果都為true。
Stringa="ab";
Stringbb="b";
Stringb="a"+bb;
System.out.println((a==b));//result=false
分析:JVM對於字元串引用,由於在字元串的"+"連接中,有字元串引用存在,而引用的值在程序編譯期是無法確定的,即"a"+bb無法被編譯器優化,只有在程序運行期來動態分配並將連接後的新地址賦給b。所以上面程序的結果也就為false。
Stringa="ab";
finalStringbb="b";
Stringb="a"+bb;
System.out.println((a==b));//result=true
分析:和[3]中唯一不同的是bb字元串加了final修飾,對於final修飾的變數,它在編譯時被解析為常量值的一個本地拷貝存儲到自己的常量池中或嵌入到它的位元組碼流中。所以此時的"a"+bb和"a"+"b"效果是一樣的。故上面程序的結果為true。
Stringa="ab";
finalStringbb=getBB();
Stringb="a"+bb;
System.out.println((a==b));//result=false
privatestaticStringgetBB(){
return"b";
}
分析:JVM對於字元串引用bb,它的值在編譯期無法確定,只有在程序運行期調用方法後,將方法的返回值和"a"來動態連接並分配地址為b,故上面程序的結果為false。
通過上面4個例子可以得出得知:
Strings="a"+"b"+"c";
就等價於Strings="abc";
Stringa="a";
Stringb="b";
Stringc="c";
Strings=a+b+c;
這個就不一樣了,最終結果等於:
1.StringBuffertemp=newStringBuffer();
2.temp.append(a).append(b).append(c);
3.Strings=temp.toString();
由上面的分析結果,可就不難推斷出String採用連接運算符(+)效率低下原因分析,形如這樣的代碼:
publicclassTest{
publicstaticvoidmain(Stringargs[]){
Strings=null;
for(inti=0;i<100;i++){
s+="a";
}
}
}
每做一次+就產生個StringBuilder對象,然後append後就扔掉。下次循環再到達時重新產生個StringBuilder對象,然後append字元串,如此循環直至結束。如果我們直接採用StringBuilder對象進行append的話,我們可以節省N-1次創建和銷毀對象的時間。所以對於在循環中要進行字元串連接的應用,一般都是用StringBuffer或StringBulider對象來進行append操作。
String對象的intern方法理解和分析:
1.publicclassTest4{
2.privatestaticStringa="ab";
3.publicstaticvoidmain(String[]args){
4.Strings1="a";
5.Strings2="b";
6.Strings=s1+s2;
7.System.out.println(s==a);//false
8.System.out.println(s.intern()==a);//true
9.}
10.}
這里用到Java裡面是一個常量池的問題。對於s1+s2操作,其實是在堆裡面重新創建了一個新的對象,s保存的是這個新對象在堆空間的的內容,所以s與a的值是不相等的。而當調用s.intern()方法,卻可以返回s在常量池中的地址值,因為a的值存儲在常量池中,故s.intern和a的值相等。
總結
棧中用來存放一些原始數據類型的局部變數數據和對象的引用(String,數組.對象等等)但不存放對象內容
堆中存放使用new關鍵字創建的對象.
字元串是一個特殊包裝類,其引用是存放在棧里的,而對象內容必須根據創建方式不同定(常量池和堆).有的是編譯期就已經創建好,存放在字元串常量池中,而有的是運行時才被創建.使用new關鍵字,存放在堆中。
E. Java中怎麼知道一個變數的類型
復制下面代碼:
class Test{
public static void main(String[] args){
int i=1; //int類型變數
System.out.println(getType(i)); //列印變數類型為int
}
public static String getType(Object o){ //獲取變數類型方法
return o.getClass().toString(); //使用int類型的getClass()方法
}
}
(5)jvm怎麼存儲和識別變數類型擴展閱讀:
java8種基本數據類型 (4種整型+2種浮點型+1種字元型+1種邏輯型)
4種整型:
byte-1 位元組:-128~127 ;
short -2 位元組:-32768~32767 ;
int-4 位元組:-2^31~2^31-1;
long-8 位元組:-2^63~2^63-11234。
2種浮點型
float-4 位元組-32位IEEE 754單精度(有效位數6~7位);
double-8 位元組-64位IEEE 754雙精度(有效位數15位)。
1種字元型
char-2 位元組-整個Unicode字元集。
1種邏輯型
boolean-1 位元組-true或者false。
F. java變數存儲問題
我對你看到的這個東西很不認同啊,Java里對int類型是傳值i的,你定義了兩個不同的int類型變數a和b那麼它們就是毫無關系的,應該是不同的兩個地址才對。
憑我對編譯原理的理解,我覺得Java和C什麼的一樣,對局部變數是這樣處理的:
程序在編譯的時候就會給變數分配其在棧中的位置。舉個例子:
int a = 3; int b = 3;
int c = a + 1;
假設編譯時給a分配的地址是「棧底+8」,b的地址是「棧底+12」,c的地址是「棧底+16」,那麼這一段代碼編譯後變成:
mov 8(%ebp), 3
mov 12(%ebp), 3
add 16(%ebp), 8(%ebp), 1
也就是說編譯之後,程序里就沒有a、b這些東西了,直接通過地址來進行運算。
如果我上面的理解沒有問題,那麼對你的問題的回答是:
1)不用找。
2)不會改變,這個地址在編譯時就分配好了。
3)我認為函數傳參的時候對基本類型還是傳值的,即會把基本類型的參數的值復制一份放到被調用函數的棧中;對於類變數才是直接扔進去一個地址。不過我不是很確定。
後補充的那一問,沒錯我同意你的看法。
G. jvm元空間存哪些數據
方法區也稱為元空間,主要存放以下數據:
常量
靜態變數:靜態變數若為對象時,則存放對象在堆中的地址
類信息
H. JVM原理是什麼
首先這里澄清兩個概念:JVM實例和JVM執行引擎實例,JVM實例對應了一個獨立運行的Java程序,而JVM執行引擎實例則對應了屬於用戶運行程序的線程;也就是JVM實例是進程級別,而執行引擎是線程級別的。JVM是什麼?—JVM的生命周期JVM實例的誕生:當啟動一個Java程序時,一個JVM實例就產生了,任何一個擁有publicstaticvoidmain(String[]args)函數的class都可以作為JVM實例運行的起點,既然如此,那麼JVM如何知道是運行classA的main而不是運行classB的main呢?這就需要顯式的告訴JVM類名,也就是我們平時運行Java程序命令的由來,如JavaclassAhelloworld,這里Java是告訴os運行SunJava2SDK的Java虛擬機,而classA則指出了運行JVM所需要的類名。JVM實例的運行:main()作為該程序初始線程的起點,任何其他線程均由該線程啟動。JVM內部有兩種線程:守護線程和非守護線程,main()屬於非守護線程,守護線程通常由JVM自己使用,Java程序也可以標明自己創建的線程是守護線程。JVM實例的消亡:當程序中的所有非守護線程都終止時,JVM才退出;若安全管理器允許,程序也可以使用Runtime類或者System.exit()來退出。JVM是什麼?—JVM的體系結構粗略分來,JVM的內部體系結構分為三部分,分別是:類裝載器(ClassLoader)子系統,運行時數據區,和執行引擎。下面將先介紹類裝載器,然後是執行引擎,最後是運行時數據區1、類裝載器,顧名思義,就是用來裝載.class文件的。JVM的兩種類裝載器包括:啟動類裝載器和用戶自定義類裝載器,啟動類裝載器是JVM實現的一部分,用戶自定義類裝載器則是Java程序的一部分,必須是ClassLoader類的子類。(下面所述情況是針對SunJDK1.2)動類裝載器:只在系統類(JavaAPI的類文件)的安裝路徑查找要裝入的類用戶自定義類裝載器:系統類裝載器:在JVM啟動時創建,用來在CLASSPATH目錄下查找要裝入的類其他用戶自定義類裝載器:這里有必要先說一下ClassLoader類的幾個方法,了解它們對於了解自定義類裝載器如何裝載.class文件至關重要。(Stringname,bytedata[],intoffset,intlength) (Stringname,bytedata[],intoffset,intlength,);(Stringname) (Classc) defineClass用來將二進制class文件(新類型)導入到方法區,也就是這里指的類是用戶自定義的類(也就是負責裝載類)findSystemClass通過類型的全限定名,先通過系統類裝載器或者啟動類裝載器來裝載,並返回Class對象。ResolveClass:讓類裝載器進行連接動作(包括驗證,分配內存初始化,將類型中的符號引用解析為直接引用),這里涉及到Java命名空間的問題,JVM保證被一個類裝載器裝載的類所引用的所有類都被這個類裝載器裝載,同一個類裝載器裝載的類之間可以相互訪問,但是不同類裝載器裝載的類看不見對方,從而實現了有效的屏蔽。2、執行引擎:它或者在執行位元組碼,或者執行本地方法要說執行引擎,就不得不的指令集,每一條指令包含一個單位元組的操作碼,後面跟0個或者多個操作數。(一)指令集以棧為設計中心,而非以寄存器為中心這種指令集設計如何滿足Java體系的要求:平台無關性:以棧為中心使得在只有很少register的機器上實現Java更便利compiler一般採用stack向連接優化器傳遞編譯的中間結果,若指令集以stack為基礎,則有利於運行時進行的優化工作與執行即時編譯或者自適應優化的執行引擎結合,通俗的說就是使編譯和運行用的數據結構統一,更有利於優化的開展。網路移動性:class文件的緊湊性。安全性:指令集中絕大部分操作碼都指明了操作的類型。(在裝載的時候使用數據流分析期進行一次性驗證,而非在執行每條指令的時候進行驗證,有利於提高執行速度)。(二)執行技術主要的執行技術有:解釋,即時編譯,自適應優化、晶元級直接執行其中解釋屬於第一代JVM,即時編譯JIT屬於第二代JVM,自適應優化(目前Sun的HotspotJVM採用這種技術)則吸取第一代JVM和第二代JVM的經驗,採用兩者結合的方式自適應優化:開始對所有的代碼都採取解釋執行的方式,並監視代碼執行情況,然後對那些經常調用的方法啟動一個後台線程,將其編譯為本地代碼,並進行仔細優化。若方法不再頻繁使用,則取消編譯過的代碼,仍對其進行解釋執行。3、運行時數據區:主要包括:方法區,堆,Java棧,PC寄存器,本地方法棧(1)方法區和堆由所有線程共享堆:存放所有程序在運行時創建的對象方法區:當JVM的類裝載器載入.class文件,並進行解析,把解析的類型信息放入方法區。(2)Java棧和PC寄存器由線程獨享,在新線程創建時間里(3)本地方法棧:存儲本地方法調用的狀態上邊總體介紹了運行時數據區的主要內容,下邊進行詳細介紹,要介紹數據區,就不得不說明JVM中的數據類型。JVM中的數據類型:JVM中基本的數據單元是word,而word的長度由JVM具體的實現者來決定數據類型包括基本類型和引用類型,(1)基本類型包括:數值類型(包括除boolean外的所有的Java基本數據類型),boolean(在JVM中使用int來表示,0表示false,其他int值均表示true)和returnAddress(JVM的內部類型,用來實現finally子句)。(2)引用類型包括:數組類型,類類型,介面類型前邊講述了JVM中數據的表示,下面讓我們輸入到JVM的數據區首先來看方法區:上邊已經提到,方法區主要用來存儲JVM從class文件中提取的類型信息,那麼類型信息是如何存儲的呢?眾所周知,Java使用的是大端序(big?endian:即低位元組的數據存儲在高位內存上,如對於1234,12是高位數據,34為低位數據,則Java中的存儲格式應該為12存在內存的低地址,34存在內存的高地址,x86中的存儲格式與之相反)來存儲數據,這實際上是在class文件中數據的存儲格式,但是當數據倒入到方法區中時,JVM可以以任何方式來存儲它。類型信息:包括class的全限定名,class的直接父類,類類型還是介面類型,類的修飾符(public,等),所有直接父介面的列表,Class對象提供了訪問這些信息的窗口(可通過Class.forName(「」)或instance.getClass()獲得),下面是Class的方法,相信大家看了會恍然大悟,(原來如此J)getName(),getSuperClass(),isInterface(),getInterfaces(),getClassLoader();static變數作為類型信息的一部分保存指向ClassLoader類的引用:在動態連接時裝載該類中引用的其他類指向Class類的引用:必然的,上邊已述該類型的常量池:包括直接常量(String,integer和floatpoint常量)以及對其他類型、欄位和方法的符號引用(注意:這里的常量池並不是普通意義上的存儲常量的地方,這些符號引用可能是我們在編程中所接觸到的變數),由於這些符號引用,使得常量池成為Java程序動態連接中至關重要的部分欄位信息:普通意義上的類型中聲明的欄位方法信息:類型中各個方法的信息編譯期常量:指用final聲明或者用編譯時已知的值初始化的類變數class將所有的常量復制至其常量池或者其位元組碼流中。方法表:一個數組,包括所有它的實例可能調用的實例方法的直接引用(包括從父類中繼承來的)除此之外,若某個類不是抽象和本地的,還要保存方法的位元組碼,操作數棧和該方法的棧幀,異常表。舉例:classLava{ privateintspeed=5; voidflow(){} classVolcano{ publicstaticvoidmain(String[]args){ Lavalava=newLava(); lava.flow(); } } 運行命令JavaVolcano;(1)JVM找到Volcano.class倒入,並提取相應的類型信息到方法區。通過執行方法區中的位元組碼,JVM執行main()方法,(執行時會一直保存指向Vocano類的常量池的指針)(2)Main()中第一條指令告訴JVM需為列在常量池第一項的類分配內存(此處再次說明了常量池並非只存儲常量信息),然後JVM找到常量池的第一項,發現是對Lava類的符號引用,則檢查方法區,看Lava類是否裝載,結果是還未裝載,則查找「Lava.class」,將類型信息寫入方法區,並將方法區Lava類信息的指針來替換Volcano原常量池中的符號引用,即用直接引用來替換符號引用。(3)JVM看到new關鍵字,准備為Lava分配內存,根據Volcano的常量池的第一項找到Lava在方法區的位置,並分析需要多少對空間,確定後,在堆上分配空間,並將speed變數初始為0,並將lava對象的引用壓到棧中(4)調用lava的flow()方法好了,大致了解了方法區的內容後,讓我們來看看堆Java對象的堆實現:Java對象主要由實例變數(包括自己所屬的類和其父類聲明的)以及指向方法區中類數據的指針,指向方法表的指針,對象鎖(非必需),等待集合(非必需),GC相關的數據(非必需)(主要視GC演算法而定,如對於標記並清除演算法,需要標記對象是否被引用,以及是否已調用finalize()方法)。那麼為什麼Java對象中要有指向類數據的指針呢?我們從幾個方面來考慮首先:當程序中將一個對象引用轉為另一個類型時,如何檢查轉換是否允許?需用到類數據其次:動態綁定時,並不是需要引用類型,而是需要運行時類型,這里的迷惑是:為什麼類數據中保存的是實際類型,而非引用類型?這個問題先留下來,我想在後續的讀書筆記中應該能明白指向方法表的指針:這里和C++的VTBL是類似的,有利於提高方法調用的效率對象鎖:用來實現多個線程對共享數據的互斥訪問等待集合:用來讓多個線程為完成共同目標而協調功過。(注意Object類中的wait(),notify(),notifyAll()方法)。Java數組的堆實現:數組也擁有一個和他們的類相關聯的Class實例,具有相同dimension和type的數組是同一個類的實例。數組類名的表示:如[[LJava/lang/Object表示Object[][],[I表示int[],[[[B表示byte[][][]至此,堆已大致介紹完畢,下面來介紹程序計數器和Java棧程序計數器:為每個線程獨有,在線程啟動時創建,若thread執行Java方法,則PC保存下一條執行指令的地址。若thread執行native方法,則Pc的值為undefinedJava棧:Java棧以幀為單位保存線程的運行狀態,Java棧只有兩種操作,幀的壓棧和出棧。每個幀代表一個方法,Java方法有兩種返回方式,return和拋出異常,兩種方式都會導致該方法對應的幀出棧和釋放內存。幀的組成:局部變數區(包括方法參數和局部變數,對於instance方法,還要首先保存this類型,其中方法參數按照聲明順序嚴格放置,局部變數可以任意放置),操作數棧,幀數據區(用來幫助支持常量池的解析,正常方法返回和異常處理)。本地方法棧:依賴於本地方法的實現,如某個JVM實現的本地方法借口使用C連接模型,則本地方法棧就是C棧,可以說某線程在調用本地方法時,就進入了一個不受JVM限制的領域,也就是JVM可以利用本地方法來動態擴展本身。相信大家都明白JVM是什麼了吧。原文鏈接: http://www.cnblogs.com/chenzhao/archive/2011/08/14/2137713.html