㈠ 什麼是LCM模組工藝流程
LCM工藝(Liquid Composite Molding,復合材料液體成型工藝),是指以RTM、RFI以及RRIM為代表的復合材料液體成型類技術。其主要原理為首先在模腔中鋪好按性能和結構要求設計好的增強材料預成型體,採用注射設備將專用注射樹脂注入閉合模腔或加熱熔化模腔內的樹脂膜。模具具有周邊密封和緊固以及注射及排氣系統以保證樹脂流動順暢並排出模腔中的全部氣體和徹底浸潤纖維,並且模具有加熱系統可以進行加熱固化而成型復合材料構件。LCM(Liquid Crystal Mole),即液晶模塊。
㈡ 誰給咱說下液晶顯示器面板製造過程
液晶面板的主要製造工序:
1.ARRAY(陣列)工序:
主要是製造TFT基板及彩色濾光片(CF基板)。
流程:玻璃清洗-->成膜-->清洗-->光刻膠塗布-->曝光-->刻蝕-->光刻膠剝離-->清洗-->測試
2. CELL(面板成型)工序:
將前工序ARRAY製成的TFT玻璃基板與CF玻璃基板經過配向處理、對位貼合後灌入液晶。
流程:TFT&CF玻璃基板清洗-->配向膜形成-->清洗-->框膠-->間隔散布-->液晶灌注-->對位壓合-->切割裂片-->偏光板貼付-->點燈檢查
3 .MODULE(模組構裝)工序:
將CELL工序加工完成的面板與TAB、PCB、背光(BackLight)模組、外框等多種周邊零部件進行組裝。
流程:ACF貼片-->IC接合-->塗塑-->背光板框架組裝-->環境測試-->檢查測試
看完FLASH或許大家對液晶的基本構造還不是很理解,那麼就仔細看下圖,筆者在下文中給大家解釋液晶的基本原理。
液晶面板的組成結構
從上圖可以看出液晶面板各部分分離後更像一個多層三明治,了解這些部件的作用前我們先了解一下液晶的基本成像原理。事實上液晶材質本身是不發光的,從上圖我們可以看出夾在彩色濾光片(CF基板)和TFT玻璃間的液晶主要是起到類似相機快門的作用,通過施加電壓的變化來改變液晶分子的偏轉角度進而控制從背光源傳送過來的光線通透。再通過彩色濾光片形成擁有色澤和明暗層次感的畫面。
液晶面板的基本結構:
前框:前框是金屬或塑膠材質的外框,用來保護LCD的邊緣並防止靜電放電沖擊和加固LCD結構。
水平偏光片:偏光片是一種只允許某偏振方向的光線才能通過的光學片板,能將自然光轉換成直線偏光的光學元件。其作用機制是將直角的入射光線經過水平偏光片後使水平方向的光線通過,另一部分垂直方向的光線則被吸收,或利用反射和散射等作用使其屏蔽。在製作LCD的過程中,必須上下各用一片,並且成交錯方向置入,主要用途是在有電場與無電場時使光源產生位相差而呈現敏感的狀態,用以顯示字幕或圖案。
彩色濾光片:彩色的LCD需要用到彩色濾光片,經由控制IC的信號處理,使得從背光源發射的強光經由彩色濾光片進而產生彩色的畫面。彩色濾光片製作在玻璃基板之上,將紅,綠,藍三原色的有機光阻材料製作在每一個像素之內。
液晶:液態晶體是種特殊物質,除了具有一般固體晶體的變折射特性外,同時又具有液體的流動性,液態分子的排列方向可以通過電場或磁場來控制。
TFT玻璃:TFT玻璃面板擁有數百萬個TFT DECICE和控制液晶區域的ITO(透明導電金屬)排列成一個矩陣組成的,因此被稱為陣列,FLASH的第一部分就是描述的這一部分的製造過程。
垂直偏光片:偏光片是一種只允許某方向的光線才能通過的光學片板,能將自然光轉換成直線偏光的光學元件。
驅動IC與印刷電路板:該部分主要功能輸出需要的電壓至像素,以控制液晶分子的扭轉程度。
擴散片:擴散片的作用是將背光模組射出的光源擴散,並使其亮度均一。
擴散板:和擴散片的功能類似,為液晶顯示器提供一個均勻的面光源。
膠框:主要是用來固定整個背光模組,放置不當碰撞臟污等對背光板模組功能的損害及影響。
背光源:因為液晶材質本身不發光,所以必須依靠額外光源來達到顯示的功能,光源一般位於液晶顯示器面板後方,故稱為背光源。
背板:將背光源,液晶顯示器,電路等固定在外框結構架上的設備,它用於LCD的最終組裝。
主控制板:LCD的驅動控制電路板,將影像輸入的訊號轉為LCD的顯示訊號。
背光模組點燈器:背光模組點燈器是將有電源供應器的直流電壓訊號轉為高頻高壓脈沖交流電,並持續點亮背光模組中的冷陰極燈管。
㈢ 如何製作最簡易的升壓模塊。
自製升壓電路的方法如下:
1、准備所需材料如下:
VT 可以選擇 9013 等管子,如需電流大,可以選擇功率更大的管;
R 普通100歐的電阻;
D1 普通的1N4148;
C 普通電解電容 ;
變壓器T ,這個是關鍵,用高導磁率的磁環繞制,可以在廢舊的鎮流器,電腦電源拆取,L1 使用漆包線繞10匝,在6匝處抽頭,將L1分成L1a(m匝)和L1b(n匝)兩段,且n<m,具體匝數根據升壓要求來確定。L2用同樣的線繞10匝左右,漆包線也可用絕緣的銅芯線。
2、將上述材料按照如下方式連接即可。
自舉電路也叫升壓電路,利用自舉升壓二極體,自舉升壓電容等電子元件,使電容放電電壓和電源電壓疊加,從而使電壓升高.有的電路升高的電壓能達到數倍電源電壓。
㈣ 電腦內存條怎麼製造
內存生產示流程示意圖:
准備工作→刮錫膏→AOI檢測→錫膏厚度檢測→貼件封裝→迴流焊→X光機檢測→目測→貼標→自動裁切→寫SPD信息→功能測試→最終目測→包裝→抽檢→封裝出貨。
詳細生產程序:
1.在內存生產之前,必須先對內存PCB(印刷電路)、內存晶元等原料進行檢驗,確認質量合格後就可以開始生產了
㈤ 求內存發展史我要從SDRAM到DDR2的詳細過程
內存發展史
Wikipedia,自由的網路全書
在了解內存的發展之前,我們應該先解釋一下幾個常用詞彙,這將有助於我們加強對內存的理解。RAM就是Random Access Memory(隨機存貯器)的縮寫。它又分成兩種Static RAM(靜態隨機存貯器)和Dynamic RAM(動態隨機存貯器)。
SRAM曾經是一種主要的內存,SRAM速度很快而且不用刷新就能保存數據不丟失。它以雙穩態電路形式存儲數據,結構復雜,內部需要使用更多的晶體管構成寄存器以保存數據,所以它採用的矽片面積相當大,製造成本也相當高,所以現在只能把SRAM用在比主內存小的多的高速緩存上。隨著 Intel將L2高速緩存整合入CPU(從Medocino開始)後,SRAM失去了最大應用需求來源,還好在行動電話從模擬轉向數字的發展趨勢中,終於為具有省電優勢的SRAM尋得了另一個需求成長的契機,再加上網路伺服器、路由器等的需求激勵,才使得SRAM市場勉強得以繼續成長。
DRAM,顧名思義即動態RAM。DRAM的結構比起SRAM來說要簡單的多,基本結構是一隻MOS管和一個電容構成。具有結構簡單、集成度高、功耗低、生產成本低等優點,適合製造大容量存儲器,所以現在我們用的內存大多是由DRAM構成的。所以下面主要介紹DRAM內存。在詳細說明DRAM存儲器前首先要說一下同步的概念,根據內存的訪問方式可分為兩種:同步內存和非同步內存。區分的標準是看它們能不能和系統時鍾同步。內存控制電路(在主板的晶元組中,一般在北橋晶元組中)發出行地址選擇信號(RAS)和列地址選擇信號(CAS)來指定哪一塊存儲體將被訪問。在SDRAM之前的 EDO內存就採用這種方式。讀取數據所用的時間用納秒錶示。當系統的速度逐漸增加,特別是當66MHz頻率成為匯流排標准時,EDO內存的速度就顯得很慢了,CPU總要等待內存的數據,嚴重影響了性能,內存成了一個很大的瓶頸。因此出現了同步系統時鍾頻率的SDRAM。
DRAM的分類 FP DRAM:又叫快頁內存,在386時代很流行。因為DRAM需要恆電流以保存信息,一旦斷電,信息即丟失。它的刷新頻率每秒鍾可達幾百次,但由於FP DRAM使用同一電路來存取數據,所以DRAM的存取時間有一定的時間間隔,這導致了它的存取速度並不是很快。另外,在DRAM中,由於存儲地址空間是按頁排列的,所以當訪問某一頁面時,切換到另一頁面會佔用CPU額外的時鍾周期。其介面多為72線的SIMM類型。 EDO DRAM:EDO RAM――Extended Date Out RAM——外擴充數據模式存儲器,EDO-RAM同FP DRAM相似,它取消了擴展數據輸出內存與傳輸內存兩個存儲周期之間的時間間隔,在把數據發送給CPU的同時去訪問下一個頁面,故而速度要比普通DRAM 快15~30%。工作電壓為一般為5V,其介面方式多為72線的SIMM類型,但也有168線的DIMM類型。EDO DRAM這種內存流行在486以及早期的奔騰電腦上。當前的標準是SDRAM(同步DRAM的縮寫),顧名思義,它是同步於系統時鍾頻率的。SDRAM內存訪問採用突發(burst)模式,它和原理是, SDRAM在現有的標准動態存儲器中加入同步控制邏輯(一個狀態機),利用一個單一的系統時鍾同步所有的地址數據和控制信號。使用SDRAM不但能提高系統表現,還能簡化設計、提供高速的數據傳輸。 在功能上,它類似常規的DRAM,也需時鍾進行刷新。 可以說, SDRAM是一種改善了結構的增強型DRAM。然而,SDRAM是如何利用它的同步特性而適應高速系統的需要的呢?我們知道,原先我們使用的動態存儲器技術都是建立在非同步控制基礎上的。系統在使用這些非同步動態存儲器時需插入一些等待狀態來適應非同步動態存儲器的本身需要,這時,指令的執行時間往往是由內存的速度、而非系統本身能夠達到的最高速率來決定。例如,當將連續數據存入CACHE時,一個速度為60ns的快頁內存需要40ns的頁循環時間;當系統速度運行在100MHz時(一個時鍾周期10ns),每執行一次數據存取,即需要等待4個時鍾周期!而使用SDRAM,由於其同步特性,則可避免這一時。 SDRAM結構的另一大特點是其支持DRAM的兩列地址同時打開。兩個打開的存儲體間的內存存取可以交叉進行,一般的如預置或激活列可以隱藏在存儲體存取過程中,即允許在一個存儲體讀或寫的同時,令一存儲體進行預置。按此進行,100MHz的無縫數據速率可在整個器件讀或寫中實現。因為SDRAM的速度約束著系統的時鍾速度,它的速度是由MHz或ns來計算的。 SDRAM的速度至少不能慢於系統的時鍾速度,SDRAM的訪問通常發生在四個連續的突發周期,第一個突發周期需要4個系統時鍾周期,第二到第四個突發周期只需要1個系統時鍾周期。用數字表示如下:4-1-1-1。順便提一下BEDO(Burst EDO)也就是突發EDO內存。實際上其原理和性能是和SDRAM差不多的,因為Intel的晶元組支持SDRAM,由於INTEL的市場領導地位幫助 SDRAM成為市場的標准。
DRAMR的兩種介面類型 DRAM主要有兩種介面類型,既早期的SIMM和現在的標准DIMM。SIMM是Single-In Line Memory Mole的簡寫,即單邊接觸內存模組,這是486及其較早的PC機中常用的內存的介面方式。在更早的PC機中(486以前),多採用30針的SIMM 介面,而在Pentium中,應用更多的則是72針的SIMM介面,或者是與DIMM介面類型並存。DIMM是Dual In-Line Memory Mole的簡寫,即雙邊接觸內存模組,也就是說這種類型介面內存的插板的兩邊都有數據介面觸片,這種介面模式的內存廣泛應用於現在的計算機中,通常為 84針,但由於是雙邊的,所以一共有84×2=168線接觸,故而人們經常把這種內存稱為168線內存,而把72線的SIMM類型內存模組直接稱為72線內存。DRAM內存通常為72線,EDO-RAM內存既有72線的,也有168線的,而SDRAM內存通常為168線的。
新的內存標准在新的世紀到來之時,也帶來了計算機硬體的重大改變。計算機的製造工藝發展到已經可以把微處理器(CPU)的時鍾頻率提高的一千兆的邊緣。相應的內存也必須跟得上處理器的速度才行。現在有兩個新的標准,DDR SDRAM內存和Rambus內存。它們之間的競爭將會成為PC內存市場競爭的核心。DDR SDRAM代表著一條內存逐漸演化的道路。Rambus則代表著計算機設計上的重大變革。從更遠一點的角度看。DDR SDRAM是一個開放的標准。然而Rambus則是一種專利。它們之間的勝利者將會對計算機製造業產生重大而深遠的影響。
RDRAM在工作頻率上有大幅度的提升,但這一結構的改變,涉及到包括晶元組、DRAM製造、封裝、測試甚至PCB及模組等的全面改變,可謂牽一發而動全身。未來高速DRAM結構的發展究竟如何?Intel重新整裝再發的820晶元組,是否真能如願以償地讓RDRAM登上主流寶座?
PC133 SDRAM:PC133 SDRAM基本上只是PC100 SDRAM的延伸,不論在DRAM製造、封裝、模組、連接器方面,都延續舊有規范,它們的生產設備相同,因此生產成本也幾乎與PC100 SDRAM相同。嚴格來說,兩者的差別僅在於相同製程技術下,所多的一道「篩選」程序,將速度可達133MHz的顆粒挑選出來而已。若配合可支持 133MHz外頻的晶元組,並提高CPU的前端匯流排頻率(Front Side Bus)到133MHz,便能將DRAM帶寬提高到1GB/sec以上,從而提高整體系統性能。
DDR-SDRAM:DDR SDRAM(Double Data Rate DRAM)或稱之為SDRAMⅡ,由於DDR在時鍾的上升及下降的邊緣都可以傳輸資料,從而使得實際帶寬增加兩倍,大幅提升了其性能/成本比。就實際功能比較來看,由PC133所衍生出的第二代PC266 DDR SRAM(133MHz時鍾×2倍數據傳輸=266MHz帶寬),不僅在InQuest最新測試報告中顯示其性能平均高出Rambus 24.4%,在Micron的測試中,其性能亦優於其他的高頻寬解決方案,充份顯示出DDR在性能上已足以和Rambus相抗衡的程度。
Direct Rambus-DRAM :Rambus DRAM設計與以往DRAM很大的不同之處在於,它的微控制器與一般內存控制器不同,使得晶元組必須重新設計以符合要求,此外,數據通道介面也與一般內存不同,Rambus以2條各8 bit寬(含ECC則為9 bit)的數據通道(channel)傳輸數據,雖然比SDRAM的64bit窄,但其時鍾頻率卻可高達400MHz,且在時鍾的上升和下降沿都能傳輸數據,因而能達到1.6GB/sec的尖峰帶寬。
各種DRAM規格之綜合比較數據帶寬:從數據帶寬來看,傳統PC100在時鍾頻率為100MHz的情況下,尖峰數據傳輸率可達到800MB/sec。若以先進0.25微米線程製造的 DRAM,大都可以「篩選」出時鍾頻率達到133MHz的PC133顆粒,可將尖峰數據傳輸率再次提高至1.06GB/sec,只要CPU及晶元組能配合,就可提高整體系統性能。此外,就DDR而言,由於其在時鍾上升和下降沿都能傳輸數據,所以在相同133MHz的時鍾頻率下,其尖峰數據傳輸將可大幅提高兩倍,達到2.1 GB/sec的水準,其性能甚至比現階段Rambus所能達到的1.6GB/sec更高。
傳輸模式:傳統SDRAM採用並列數據傳輸方式,Rambus則採取了比較特別的串列傳輸方式。在串列的傳輸方式之下,資料信號都是一進一出,可以把數據帶寬降為16bit,而且可大幅提高工作時鍾頻率(400MHz),但這也形成了模組在數據傳輸設計上的限制。也就是說,在串接的模式下,如果有其中一個模組損壞、或是形成斷路,便會使整個系統無法正常開機。因此,對採用Rambus內存模組的主機板而言,便必須將三組內存擴充插槽完全插滿,如果Rambus模組不足的話,只有安裝不含RDRAM顆粒的中繼模組(Continuity RIMM Mole;C-RIMM),純粹用來提供信號的串接工作,讓數據的傳輸暢通。
模組及PCB的設計:由於Rambus的工作頻率高達400MHz,所以不管是電路設計、線路布局、顆粒封裝及記憶模組的設計等,都和以往SDRAM大為不同。以模組設計而言,RDRAM所構成的記憶模組稱之為RIMM(Rambus In Memory Mole),目前的設計可採取4、6、8、12與16顆等不同數目的RDRAM顆粒來組成,雖然引腳數提高到了184隻,但整個模組的長度卻與原有 DIMM相當。
另外,在設計上,Rambus的每一個傳輸信道所能承載的晶元顆粒數目有限(最多32顆),從而造成RDRAM內存模組容量將有所限制。也就是說,如果已經安裝了一隻含16顆RDARM顆粒的RIMM模組時,若想要再擴充內存,最多隻能再安裝具有16顆RDARM的模組。另外,由於 RDARM在高頻下工作將產生高溫,所以RIMM模組在設計時必須加上一層散熱片,也增加了RIMM模組的成本。
顆粒的封裝:DRAM封裝技術從最早的DIP、SOJ提高到TSOP的形式。從現在主流SDRAM的模組來看,除了勝創科技首創的TinyBGA技術和樵風科技首創的BLP封裝模式外,絕大多數還是採用TSOP的封裝技術。
隨著DDR、RDRAM的陸續推出,將內存頻率提高到一個更高的水平上,TSOP封裝技術漸漸有些力不從心了,難以滿足DRAM設計上的要求。從Intel力推的RDRAM來看,採用了新一代的μBGA封裝形式,相信未來DDR等其他高速DRAM的封裝也會採取相同或不同的BGA封裝方式。
盡管RDRAM在時鍾頻率上有了突破性的進展,有效地提高了整個系統性能,但畢竟在實際使用上,其規格與現階段主流的SDRAM有很大的差異,不僅不兼容於現有系統晶元組而成了Intel一家獨攬的局面。甚至在DRAM模組的設計上,不僅使用了最新一代的BGA封裝方式,甚至在電路板的設計上,都採取用了8層板的嚴格標准,更不用說在測試設備上的龐大投資。使得大多數的DRAM及模組廠商不敢貿然跟進。
再說,由於Rambus是個專利標准,想生產RDRAM的廠商必須先取得Rambus公司的認證,並支付高額的專利費用。不僅加重了各DRAM廠商的成本負擔,而且它們擔心在制定未來新一代的內存標准時會失去原來掌握的規格控制能力。
由於RIMM模組的顆粒最多隻能為32顆,限制了Rambus應用,只能用在入門級伺服器和高級PC上。或許就PC133而言,在性能上無法和Rambus抗衡,但是一旦整合了DDR技術後,其數據帶寬可達到2.1GB/sec,不僅領先Rambus所能達到的1.6GB/sec標准,而且由於其開放的標准及在兼容性上遠比Rambus高的原故,估計將會對Rambus造成非常大的殺傷力。更何況台灣在威盛與AMD等聯盟的強力支持下,Intel是否能再象往日一般地呼風喚雨,也成了未知數。至少,在低價PC及網路PC方面,Rambus的市場將會很小。
結論:盡管Intel採取了種種不同的策略布局及對策,要想挽回Rambus的氣勢,但畢竟像Rambus這種具有突破性規格的產品,在先天上便存在有著諸多較難克服的問題。或許Intel可以藉由更改主機板的RIMM插槽方式、或是提出SDRAM與RDRAM共同存在的過渡性方案(S- RIMM、RIMM Riser)等方式來解決技術面上的問題。但一旦涉及規模量產成本的控制問題時,便不是Intel所能一家獨攬的,更何況在網路趨勢下的計算機應用將愈來愈趨於低價化,市場需求面是否對Rambus有興趣,則仍有待考驗。 在供給方面,從NEC獨創的VCM SDRAM規格(Virtual Channel Memory)、以及Samsung等DRAM大廠對Rambus支持態度已趨保守的情況來看,再加上相關封裝及測試等設備上的投資不足,估計年底之前, Rambus內存模組仍將缺乏與PC133甚至DDR的價格競爭力。
就長遠的眼光來看,Rambus架構或許可以成為主流,但應不再會是主導市場的絕對主流,而SDRAM架構(PC133、DDR)在低成本的優勢,以及廣泛的應用領域,應該會有非常不錯的表現。相信未來的DRAM市場,將會是多種結構並存的局面。
具最新消息,可望成為下一世代內存主力的Rambus DRAM因晶元組延遲推出,而氣勢稍挫的情況之下,由全球多家半導體與電腦大廠針對DDR SDRAM的標准化,而共同組成的AMII(Advanced Memory International Inc、)陣營,則決定積極促進比PC200、PC266速度提高10倍以上的PC1600與PC2100 DDR SDRAM規格的標准化,此舉使得Rambus DRAM與DDR SDRAM的內存主導權之爭,邁入新的局面。全球第二大微處理器製造商AMD,決定其Athlon處理器將採用PC266規格的DDR SDRAM,而且決定在今年年中之前,開發支持DDR SDRAM的晶元組,這使DDR SDRAM陣營深受鼓舞。全球內存業者極有可能將未來投資的重心,由Rambus DRAM轉向DDR SDRAM。
綜上所述,今年DDR SDRAM的發展勢頭要超過RAMBUS。而且DDR SDRAM的生產成本只有SDRAM的1.3倍,在生產成本上更具優勢。