當前位置:首頁 » 服務存儲 » 稀土可以水下存儲嗎
擴展閱讀
webinf下怎麼引入js 2023-08-31 21:54:13
堡壘機怎麼打開web 2023-08-31 21:54:11

稀土可以水下存儲嗎

發布時間: 2022-06-23 20:04:24

❶ 什麼叫稀土謝謝!

稀土簡介

稀土就是化學元素周期表中鑭系元素―鑭(La)、鈰(Ce)、鐠(Pr)、釹(Nd)、鉕(Pm)、釤(Sm)、銪(Eu)、釓(Gd)、鋱(Tb)、鏑(Dy)、鈥(Ho)、鉺(Er)、銩(Tm)、鐿(Yb)、鑥(Lu),以及與鑭系的15個元素密切相關的兩個元素―鈧(Sc)和釔(Y)共17種元素,稱為稀土元素(RareEarth)。簡稱稀土(RE或R)。
稀土元素最初是從瑞典產的比較稀少的礦物中發現的,「土」是按當時的習慣,稱不溶於水的物質,故稱稀土。
根據稀土元素原子電子層結構和物理化學性質,以及它們在礦物中共生情況和不同的離子半徑可產生不同性質的特徵,十七種稀土元素通常分為二組。
輕稀土(又稱鈰組)包括:鑭、鈰、鐠、釹、鉕、釤、銪、釓。
重稀土(又稱釔組)包括:鋱、鏑、鈥、鉺、銩、鐿、鑥、鈧、釔。
稱鈰組或釔組,是因為礦物經分離得到的稀土混合物中,常以鈰或釔占優勢而得名。
稀土元素的主要物理化學性質
稀土元素是典型的金屬元素。它們的金屬活潑性僅次於鹼金屬和鹼土金屬元素,而比其他金屬元素活潑。在17個稀土元素當中,按金屬的活潑次序排列,由鈧,釔、鑭遞增,由鑭到鑥遞減,即鑭元素最活潑。稀土元素能形成化學穩定的氧化物、鹵化物、硫化物。稀土元素可以和氮、氫、碳、磷發生反應,易溶於鹽酸、硫酸和硝酸中。
稀土易和氧、硫、鉛等元素化合生成熔點高的化合物,因此在鋼水中加入稀土,可以起到凈化鋼的效果。由於稀土元素的金屬原子半徑比鐵的原子半徑大,很容易填補在其晶粒及缺陷中,並生成能阻礙晶粒繼續生長的膜,從而使晶粒細化而提高鋼的性能。
稀土元素具有未充滿的4f電子層結構,並由此而產生多種多樣的電子能級。因此,稀土可以作為優良的熒光,激光和電光源材料以及彩色玻璃、陶瓷的釉料。
稀土離子與羥基、偶氮基或磺酸基等形成結合物,使稀土廣泛用於印染行業。而某些稀土元素具有中子俘獲截面積大的特性,如釤、銪、釓、鏑和鉺,可用作原子能反應堆的控制材料和減速劑。而鈰、釔的中子俘獲截面積小,則可作為反應堆燃料的稀釋劑。
稀土具有類似微量元素的性質,可以促進農作物的種子萌發,促進根系生長,促進植物的光合作用。

❷ 稀土

稀土就是化學元素周期表中鑭系元素—鑭(La)、鈰(Ce)、鐠(Pr)、釹(Nd)、鉕(Pm)、釤(Sm)、銪(Eu)、釓(Gd)、鋱(Tb)、鏑(Dy)、鈥(Ho)、鉺(Er)、銩(Tm)、鐿(Yb)、鑥(Lu),以及與鑭系的15個元素密切相關的兩個元素—鈧(Sc)和釔(Y)共17種元素,稱為稀土元素(Rare Earth)。簡稱稀土(RE或R)。

稀土元素通常分為二組:

1)輕稀土(又稱鈰組):鑭、鈰、鐠、釹、鉕、釤、銪、釓。

2)重稀土(又稱釔組):鋱、鏑、鈥、鉺、銩、鐿、鑥、鈧、釔。

鈰組與釔組之別,是因為礦物經分離得到的稀土混合物中,常以鈰或釔比例多的而得名。

漫活稀土
一、顯赫的大家族

在元素周期表上鑭系元素(Ln)佔有一格位置,卻擁擠著15個元素。其原子序數從57至71依次排列,它們是鑭(La)、鈰(Ce)、鐠(Pr)、釹(Nd)、鉕(Pm)、釤(Sm)、銪(Eu)、釓(Gd)、鋱(Tb)、鏑(Dy)、鈥(Ho)、鉺(Er)、銩(Tm,)、鐿(Yb)和鑥(Lu)。加上同屬ⅢB族的鈧(Sc)和釔(Y),原子序數分別為21和39,這17個元素通稱為稀土(RE)。通常將稀土分為兩組,從鑭至銪7個元素為輕稀土,從釓至鑥8個元素為重稀土。根據稀土分離工藝的需要,也可分為輕、中、重三組。

它們好像孿生的兄弟姐妹一樣「長相」相似。也就是稀土原子最外二層電子排列相同,因此許多化學性質非常相似,難以用簡單的化學方法將它們分開,以至於化學家和礦物學家尋尋覓覓化費153年才一一把它們辨認出來(1794年首先發現釔,1947年考耶爾和馬林斯基等人在處理鈾核裂變生成的放射性同位素時,用離子交換法從鑭系元素中發現了鉕)。又由於稀土各元素原子內層電子結構並不一樣,原子序數不一樣,它們是不同的元素,因此稀土每個成員又有不同的脾氣和特性。它們個個身手不凡,在國民經濟各領域各顯神通。特別是研究稀土元素特有的豐富的電子能級,利用其優異的光、磁、電、熱性能開發功能性新材料和器件,可預期在21世紀六大新技術領域——信息、生物、新材料、新能源、空間和海洋,稀土家族的貢獻將是顯赫的。

二、稀土不稀

「稀土」名稱的由來是歷史的誤會。18世紀時發現稀土工業原料的礦產不多,形成獨立的礦更少又很分散,造成稀少的假象。它們的氧化物和土壤的氧化物在性質和組成上很相似,而且不溶於水,因此取名「稀土」。其實稀土在地殼中含量並不稀少。表1列出稀土元素在地殼中豐度,有的比某些常見元素含量還多。例如鈰比錫高,釔與鉛高,即使少見的銩也比銀、汞還多。

中國是稀土大國,有豐富的稀土資源,輕、中、重稀土齊全。儲量、產量都是世界第一。用量僅少於美國。生產近千個規格400多種產品,是世界稀土產品主要供應國,佔世界市場的70-80%。

三、神奇的稀土

稀土的神奇作用表現在兩方面:一、在國民經濟各領域都可找到稀土成員的蹤影,每年為國家創造巨大的經濟效益和社會效益。二、隨著科學技術的進步,越來越發揮神奇的作用。

1.工業「維生素」

稀土在鋼中有凈化鋼液、使夾雜物變性和微合金化作用。因此鋼中加微量稀土就可大幅度提高鋼的強度,韌性、耐磨性和抗氧化能力。譽為工業「維生素」。包鋼、鋼研總院、鐵科院聯合研製的稀土鈮重軌鋼鋪軌,使用壽命提高50%以上,而且經濟效益十分明顯。鋁合金中加微量鈧和鋯,具有高強度與韌性,良好的耐磨性和可焊性。是航天航空、艦船和核能領域新型鋁合金材料。稀土應用於鋁電線電纜,提高了導電性和強度。已成為國家級電網規范性產品,成功用於50萬伏超高壓輸電線。我國生產的加稀土鋁電線電纜,年產能力超過40萬噸,投入使用每年可節電40億度。

2.稀土催化劑

採用含稀土的硅鋁酸鹽分子作裂化催化劑,在我國煉油工業中普及率已達98%。提高催化裂化能力20-30%。每年多產300萬噸輕質油,直接經濟效益60億元以上。汽車排放的尾氣中含有大量CO、NOx等有害物。用貴金屬作催化劑轉化為無害的CO<sub>2<sub>、H<sub>2<sub>O及N<sub>2<sub>國外已有成功經驗及產業化生產。我國盛產稀土,開發含少量或不含貴金屬的稀土催化劑已成為研究的熱點。有的已通過鑒定向產業化邁進。

3.農業「維生素」與稀土農用新技術

我國科技工作者大量研究和示範表明,合理施用微量稀土(主要是La和Ce),可促進農作物生根發芽,增加葉綠素,促進作物對氮、磷、鉀、鈣的吸收,增加干物質的積累,從而增加產量改善品質。經過30年歷程,稀土應用已擴展到農、牧、林業。

提高對太陽光的利用率,是農產品提高質與量的好途徑。曾報道用銪的多核有機配合物加入農用塑料薄膜中作為太陽光的轉化劑。成功地將是光中對植物有害的紫外光轉化為植物光合作用所需紅光,促進了植物的生長。用人們愛吃的西瓜、西紅柿、草莓……作實驗,結果糖分增加,瓜果更甜了,維生素C含量也增加了。平均增產10%,經濟效益增長12%左右。特別是促進作物早熟,作物早期產量提高更顯著。

4.稀土在高新技術領域的應用

隨著科技進步與高新測試儀器和方法的發展,加速了稀土新材料與器件開發與應用的速度。稀土發光材料的研究與應用已成為信息顯示、照明光源、光電器件等領域支撐材料,並使我們的生活五光十色。如稀土節能燈光效高、光色好、壽命長。與常用白熾光比可節電75-80%。稀土是理想的彩色電視發光材料,我國產品已達國際水平,40%產品出口。將來可能進入尋常百姓家的高清晰度、壁掛式大屏蔽彩電,也可能選擇稀土的熒光粉作顯示材料。含稀土的熒光材料對太陽能的應用也顯示了神奇。近年研製的發射綠和藍光發光材料(俗稱夜光粉),吸收和貯存陽光(或燈光)後,在暗處不需外加電源可發光12小時以上,作為標志物可軍用也可民用。近30年來由於信息、通訊、原子能、電子工業和空間技術發展,稀土氧化物已成為光學玻璃、激光玻璃、光學纖維、紅外玻璃、耐輻射玻璃等光功能玻璃的重要成份。

含稀土的鎳氫電池已取作污染環境的鎳鎘電池,廣泛用於攜帶型電器如行動電話、音響設備、筆記本電腦等。將來的目標是電動汽車,徹底解決汽車尾氣污染問題。

含稀土的永磁材料是最好的,我國已進入第三代稀土永磁體——釹鐵硼磁體。廣泛用於計算機通訊、自動化、音像、機電、儀器儀表、航天航空、醫療等。磁致冷是使用固體磁性材料,不使用氟利昂和壓縮機的一種全新製冷技術,具有高效節能無環境污染兩大優勢。稀土元素釓(Gd)是室溫磁致冷材料主要成份。與之配套的關鍵部件如永磁體及永磁電機都和稀土有關,因此室溫磁致冷技術是稀土高科技的典型應用,我國正處於技術攻關階段。其他如磁光存儲材料、磁致伸縮材料、巨磁阻材料,稀土高溫超導材料……也等待人們繼續努力探索稀土的神奇作用,以改變目前我國稀土在高新技術領域應用比重偏低的狀況。將資源優勢變為經濟優勢和技術優勢,我國將不僅是稀土大國,也是稀土強國!

❸ 稀土如何保存

稀土好比一種礦石,找個不會於它發生化學反應的地帶,挖個坑,在坑周為設點隔離帶埋上就可。

❹ 稀土金屬容易氧化,應該怎麼保存鑭鈰容易著火么哪裡可以買到

稀土建議真空乾燥或者煤油儲存,稀土金屬容易活潑,鈰容易著火,有很多地方可以賣

你可以找找北京那邊

❺ 稀土是什麼東西

稀土就是化學元素周期表中鑭系元素—鑭(La)、鈰(Ce)、鐠(Pr)、釹(Nd)、鉕(Pm)、釤(Sm)、銪(Eu)、釓(Gd)、鋱(Tb)、鏑(Dy)、鈥(Ho)、鉺(Er)、銩(Tm)、鐿(Yb)、鑥(Lu),以及與鑭系的15個元素密切相關的兩個元素—鈧(Sc)和釔(Y)共17種元素,稱為稀土元素(Rare Earth)。簡稱稀土(RE或R)。 稀土一詞是歷史遺留下來的名稱。稀土元素是從18世紀末葉開始陸續發現,當時人們常把不溶於水的固體氧化物稱為土。稀土一般是以氧化物狀態分離出來的,又很稀少,因而得名為稀土。通常把鑭、鈰、鐠、釹、鉕、釤、銪稱為輕稀土或鈰組稀土;把釓、鋱、鏑、鈥、鉺、銩、鐿、鑥釔稱為重稀土或釔組稀土。也有的根據稀土元素物理化學性質的相似性和差異性,除鈧之外(有的將鈧劃歸稀散元素),劃分成三組,即輕稀土組為鑭、鈰、鐠、釹、鉕;中稀土組為釤、銪、釓、鋱、鏑;重稀土組為鈥、鉺、銩、鐿、鑥、釔。 這些稀土元素的發現,從1794年芬蘭人加多林(J.Gadolin)分離出釔到1947年美國人馬林斯基(J.A.Marinsky)等製得鉕,歷時150多年。其中大部分稀土元素是歐洲的一些礦物學家、化學家、冶金學家等發現製取的。鉕是美國人馬林斯基、格蘭德寧(L.E.Glendenin)和科列爾(C.D.Coryell)用離子交換分離,在鈾裂變產物的稀土元素中獲得的。過去認為自然界中不存在鉕,直到1965年,芬蘭一家磷酸鹽工廠在處理磷灰石時發現了痕量的鉕。稀土元素在地殼中平均含量為165.35×10-6(黎彤,1976年)。在自然界中稀土元素主要以單礦物形式存在,目前世界上已發現的稀土礦物和含稀土元素的礦物有250多種,其中稀土含量∑REE>5.8%的有50~65種,可視為稀土獨立的礦物。重要的稀土礦物主要為氟碳酸鹽和磷酸鹽。稀土礦物總的特點:一是缺少硫化物和硫酸鹽(只有極個別的),這說明稀土元素具有親氧性;二是稀土的硅酸鹽主要是島狀,沒有層狀、架狀和鏈狀構造;三是部分稀土礦物(特別是復雜的氧化物及硅酸鹽)呈現非晶質狀態;四是稀土礦物的分布,在岩漿岩及偉晶岩中以硅酸鹽及氧化物為主,在熱液礦床及風化殼礦床中以氟碳酸鹽、磷酸鹽為主。富釔的礦物大部分都賦存在花崗岩類岩石和與其有關的偉晶岩、氣成熱液礦床及熱液礦床中;五是稀土元素由於其原子結構、化學和晶體化學性質相近而經常共生在同一個礦物中,即鈰族稀土和釔族稀土元素常共存在一個礦物中,但這類元素並非等量共存,有些礦物以含鈰族稀土為主,有些礦物則以釔族為主。 在目前已發現的250多種稀土礦物和含稀土元素的礦物,適合現今選冶條件的工業礦物僅有10餘種: 1)含鈰族稀土(鑭、鈰、釹)的礦物:氟碳鈰礦、氟碳鈣鈰礦、氟碳鈰鈣礦、氟碳鋇鈰礦和獨居石。 2)富釤及釓的礦物:硅鈹釔礦、鈮釔礦、黑稀金礦。 3)含釔族稀土(釔、鏑、鉺、銩等)的礦物:磷釔礦、氟碳鈣釔礦、釔易解石、褐釔鈮礦、黑稀金礦。 稀散元素在自然界里主要以分散狀態賦存在有關的金屬礦物中,如閃鋅礦一般都富含鎘、鍺、鎵、銦等,個別還含有鉈、硒與碲;黃銅礦、黝銅礦和硫砷銅礦經常富含鉈、硒及碲,個別的還富含銦與鍺;方鉛礦也常富含銦、鉈、硒及碲;輝鉬礦和斑銅礦富含錸,個別的還富含硒;黃鐵礦常富含鉈、鎵、硒、碲等。 目前,雖然已發現有近200種稀散元素礦物,但由於稀少而未富集成具有工業開採的獨立礦床,迄今只發現有很少見的獨立鍺礦、硒礦、碲礦,但礦床規模都不大。

❻ 稀土元素與水反應嗎與氧氣呢比較純的稀土元素一般怎麼來保存比較好謝謝!

稀土非常活潑,非常容易氧化。和純水不容易反應,但是如果既有水又有氧氣,氧化反應速度非常快。稀土密封乾燥隔絕空氣保存。

❼ 稀土是什麼東西它有什麼用途

概述】
稀土就是化學元素周期表中鑭系元素—鑭(La)、鈰(Ce)、鐠(Pr)、釹(Nd)、鉕(Pm)、釤(Sm)、銪(Eu)、釓(Gd)、鋱(Tb)、鏑(Dy)、鈥(Ho)、鉺(Er)、銩(Tm)、鐿(Yb)、鑥(Lu),以及與鑭系的15個元素密切相關的兩個元素—鈧(Sc)和釔(Y)共17種元素,稱為稀土元素(Rare Earth)。簡稱稀土(RE或R)。
編輯本段【稀土的分類】
1)輕稀土(又稱鈰組):鑭、鈰、鐠、釹、鉕、釤、銪、釓。
2)重稀土(又稱釔組):鋱、鏑、鈥、鉺、銩、鐿、鑥、鈧、釔。
鈰組與釔組之別,是因為礦物經分離得到的稀土混合物中,常以鈰或釔比例多的而得名。
稀土金屬(rare earth metals)又稱稀土元素,是元素周期表ⅢB族中鈧、釔、鑭系17種元素的總稱,常用R或RE表示。它們的名稱和化學符號是鈧(Sc)、釔(Y)、鑭(La)、鈰(Ce)、鐠(Pr)、釹(Nd)、鉕(Pm)、釤(Sm)、銪(Eu)、釓(Gd)、鋱(Tb)、鏑(Dy)、鈥(Ho)、鉺(Er)、銩(Tm)、鐿(Yb)、鑥(Lu)。它們的原子序數是21(Sc)、39(Y)、57(La)到71(Lu)。
編輯本段【名稱由來】
17種稀土元素名稱的由來及用途
鑭(La) � �"鑭"這個元素是1839年被命名的,當時有個叫"莫桑德"的瑞典人發現鈰土中含有其它元素,他借用希臘語中"隱藏"一詞把這種元素取名為"鑭"。 鑭的應用非常廣泛,如應用於壓電材料、電熱材料、熱電材料、磁阻材料、發光材料(蘭粉)、貯氫材料、光學玻璃、激光材料、各種合金材料等。她也應用到制備許多有機化工產品的催化劑中,光轉換農用薄膜也用到鑭,在國外,科學家把鑭對作物的作用賦與"超級鈣"的美稱。
鈰(Ce) "鈰"這個元素是由德國人克勞普羅斯,瑞典人烏斯伯齊力、希生格爾於1803年發現並命名的,以紀念1801年發現的小行星--穀神星。
鈰的廣泛應用:
(1)鈰作為玻璃添加劑,能吸收紫外線與紅外線,現已被大量應用於汽車玻璃。不僅
能防紫外線,還可降低車內溫度,從而節約空調用電。從1997年起,日本汽車玻
璃全加入氧化鈰,1996年用於汽車玻璃的氧化鈰至少有2000噸,美國約1000多噸.
(2)目前正將鈰應用到汽車尾氣凈化催化劑中,可有效防止大量汽車廢氣排到空氣中
美國在這方面的消費量占稀土總消費量的三分之一強。
(3)硫化鈰可以取代鉛、鎘等對環境和人類有害的金屬應用到顏料中,可對塑料著色
,也可用於塗料、油墨和紙張等行業。目前領先的是法國羅納普朗克公司。
(4)Ce:LiSAF激光系統是美國研製出來的固體激光器,通過監測色氨酸濃度可用
於探查生物武器,還可用於醫學。鈰應用領域非常廣泛,幾乎所有的稀土應用領
域中都含有鈰。如拋光粉、儲氫材料、熱電材料、鈰鎢電極、陶瓷電容器、壓電
陶瓷、鈰碳化硅磨料、燃料電池原料、汽油催化劑、某些永磁材料、各種合金鋼
及有色金屬等。
鐠(Pr) �� 大約160年前,瑞典人莫桑德從鑭中發現了一種新的元素,但它不是單一元素,莫桑德發現這種元素的性質與鑭非常相似,便將其定名為"鐠釹"。"鐠釹"希臘語為"雙生子"之意。大約又過了40多年,也就是發明汽燈紗罩的1885年,奧地利人韋爾斯巴赫成功地從"鐠釹"中分離出了兩個元素,一個取名為"釹",另一個則命名為"鐠"。這種"雙生子"被分隔開了,鐠元素也有了自己施展才華的廣闊天地。鐠是用量較大的稀土元素,其用於玻璃、陶瓷和磁性材料中。
鐠的廣泛應用:
(1)鐠被廣泛應用於建築陶瓷和日用陶瓷中,其與陶瓷釉混合製成色釉,也可單獨作
釉下顏料,製成的顏料呈淡黃色,色調純正、淡雅。
(2)用於製造永磁體。選用廉價的鐠釹金屬代替純釹金屬製造永磁材料,其抗氧性能
和機械性能明顯提高,可加工成各種形狀的磁體。廣泛應用於各類電子器件和馬
達上。
(3)用於石油催化裂化。以鐠釹富集物的形式加入Y型沸石分子篩中制備石油裂化催
化劑,可提高催化劑的活性、選擇性和穩定性。我國70年代開始投入工業使用,
用量不斷增大。
(4)鐠還可用於磨料拋光。另外,鐠在光纖領域的用途也越來越廣。
釹(Nd) � �伴隨著鐠元素的誕生,釹元素也應運而生,釹元素的到來活躍了稀土領域,在稀土領域中扮演著重要角色,並且左右著稀土市場。 �
釹元素憑借其在稀土領域中的獨特地位,多年來成為市場關注的熱點。金屬釹的最大用戶是釹鐵硼永磁材料。釹鐵硼永磁體的問世,為稀土高科技領域注入了新的生機與活力。釹鐵硼磁體磁能積高,被稱作當代"永磁之王",以其優異的性能廣泛用於電子、機械等行業。阿爾法磁譜儀的研製成功,標志著我國釹鐵硼磁體的各項磁性能已跨入世界一流水平。釹還應用於有色金屬材料。在鎂或鋁合金中添加1.5~2.5%釹,可提高合金的高溫性能、氣密性和耐腐蝕性,廣泛用作航空航天材料。另外,摻釹的釔鋁石榴石產生短波激光束,在工業上廣泛用於厚度在10mm以下薄型材料的焊接和切削。在醫療上,摻釹釔鋁石榴石激光器代替手術刀用於摘除手術或消毒創傷口。釹也用於玻璃和陶瓷材料的著色以及橡膠製品的添加劑。隨著科學技術的發展,稀土科技領域的拓展和延伸,釹元素將會有更廣闊的利用空間。
鉕(Pm) ��1947年,馬林斯基(J.A.Marinsky)、格倫丹寧(L.E.Glendenin)和科里爾(C.E.Coryell)從原子能反應堆用過的鈾燃料中成功地分離出61號元素,用希臘神話中的神名普羅米修斯(Prometheus)命名為鉕(Promethium)。鉕為核反應堆生產的人造放射性元素。
鉕的主要用途有:
(1)可作熱源。為真空探測和人造衛星提供輔助能量。
(2)Pm147放出能量低的β射線,用於製造鉕電池。作為導彈制導儀器及鍾表的電
源。此種電池體積小,能連續使用數年之久。此外,鉕還用於攜帶型X-射線儀、
制備熒光粉、度量厚度以及航標燈中。
釤(Sm) ��1879年,波依斯包德萊從鈮釔礦得到的"鐠釹"中發現了新的稀土元素,並根據這種礦石的名稱命名為釤。 ��釤呈淺黃色,是做釤鈷系永磁體的原料,釤鈷磁體是最早得到工業應用的稀土磁體。這種永磁體有SmCo5系和Sm2Co17系兩類。70年代前期發明了SmCo5系,後期發明了Sm2Co17系。現在是以後者的需求為主。釤鈷磁體所用的氧化釤的純度不需太高,從成本方面考慮,主要使用95%左右的產品。此外,氧化釤還用於陶瓷電容器和催化劑方面。另外,釤還具有核性質,可用作原子能反應堆的結構材料,屏敝材料和控制材料,使核裂變產生巨大的能量得以安全利用。
銪(Eu) ��1901年,德馬凱(Eugene-Antole Demarcay)從"釤"中發現了新元素,取名為銪(Europium)。這大概是根據歐洲(Europe)一詞命名的。氧化銪大部分用於熒光粉。Eu3+用於紅色熒光粉的激活劑,Eu2+用於藍色熒光粉。現在Y2O2S:Eu3+是發光效率、塗敷穩定性、回收成本等最好的熒光粉。再加上對提高發光效率和對比度等技術的改進,故正在被廣泛應用。近年氧化銪還用於新型X射線醫療診斷系統的受激發射熒光粉。氧化銪還可用於製造有色鏡片和光學濾光片,用於磁泡貯存器件,在原子反應堆的控制材料、屏敝材料和結構材料中也能一展身手。
釓(Gd) � �1880年,瑞士的馬里格納克(G.de Marignac)將"釤"分離成兩個元素,其中一個由索里特證實是釤元素,另一個元素得到波依斯包德萊的研究確認,1886年,馬里格納克為了紀念釔元素的發現者 研究稀土的先驅荷蘭化學家加多林(Gado Linium),將這個新元素命名為釓。 ��釓在現代技革新中將起重要作用。
它的主要用途有:
(1)其水溶性順磁絡合物在醫療上可提高人體的核磁共振(NMR)成像信號。
(2)其硫氧化物可用作特殊亮度的示波管和x射線熒光屏的基質柵網。
(3)在釓鎵石榴石中的釓對於磁泡記憶存儲器是理想的單基片。
(4)在無Camot循環限制時,可用作固態磁致冷介質。
(5)用作控制核電站的連鎖反應級別的抑制劑,以保證核反應的安全。
(6)用作釤鈷磁體的添加劑,以保證性能不隨溫度而變化。
另外,氧化釓與鑭一起使用,有助於玻璃化區域的變化和提高玻璃的熱穩定性。氧化釓還可用於製造電容器、x射線增感屏。 在世界上目前正在努力開發釓及其合金在磁致冷方面的應用,現已取得突破性進展,室溫下採用超導磁體、金屬釓或其合金為致冷介質的磁冰箱已經問世。
鋱(Tb) ��1843年瑞典的莫桑德(Karl G.Mosander)通過對釔土的研究,發現鋱元素(Terbium)。鋱的應用大多涉及高技術領域,是技術密集、知識密集型的尖端項目,又是具有顯著經濟效益的項目,有著誘人的發展前景。
主要應用領域有:
(1)熒光粉用於三基色熒光粉中的綠粉的激活劑,如鋱激活的磷酸鹽基質、鋱激活
的硅酸鹽基質、鋱激活的鈰鎂鋁酸鹽基質,在激發狀態下均發出綠色光。
(2)磁光貯存材料,近年來鋱系磁光材料已達到大量生產的規模,用Tb-Fe非晶態
薄膜研製的磁光光碟,作計算機存儲元件,存儲能力提高10~15倍。
(3)磁光玻璃,含鋱的法拉第旋光玻璃是製造在激光技術中廣泛應用的旋轉器、隔離
器和環形器的關鍵材料。特別是鋱鏑鐵磁致伸縮合金(TerFenol)的開發研製,
更是開辟了鋱的新用途,Terfenol是70年代才發現的新型材料,該合金中有一半
成份為鋱和鏑,有時加入鈥,其餘為鐵,該合金由美國依阿華州阿姆斯實驗室首
先研製,當Terfenol置於一個磁場中時,其尺寸的變化比一般磁性材料變化大這
種變化可以使一些精密機械運動得以實現。鋱鏑鐵開始主要用於聲納,目前已廣
泛應用於多種領域,從燃料噴射系統、液體閥門控制、微定位到機械致動器、機
構和飛機太空望遠鏡的調節 機翼調節器等領域。
鏑(Dy) �� 1886年,法國人波依斯包德萊成功地將鈥分離成兩個元素,一個仍稱為鈥,而另一個根據從鈥中"難以得到"的意思取名為鏑(dysprosium)。鏑目前在許多高技術領域起著越來越重要的作用.
鏑的最主要用途是:
(1)作為釹鐵硼系永磁體的添加劑使用,在這種磁體中添加2~3%左右的鏑,可提
高其矯頑力,過去鏑的需求量不大,但隨著釹鐵硼磁體需求的增加,它成為
必要的添加元素,品位必須在95~99.9%左右,需求也在迅速增加。
(2)鏑用作熒光粉激活劑,三價鏑是一種有前途的單發光中心三基色發光材料的
激活離子,它主要由兩個發射帶組成,一為黃光發射,另一為藍光發射,摻
鏑的發光材料可作為三基色熒光粉。
(3)鏑是制備大磁致伸縮合金鋱鏑鐵(Terfenol)合金的必要的金屬原料,能使
一些機械運動的精密活動得以實現。
(4)鏑金屬可用做磁光存貯材料,具有較高的記錄速度和讀數敏感度。
(5)用於鏑燈的制備,在鏑燈中採用的工作物質是碘化鏑,這種燈具有亮度大、
顏色好、色溫高、體積小、電弧穩定等優點,已用於電影、印刷等照明光源。
(6)由於鏑元素具有中子俘獲截面積大的特性,在原子能工業中用來測定中子能
譜或做中子吸收劑。
(7)Dy3Al5O12還可用作磁致冷用磁性工作物質。隨著科學技術的發展,鏑的應
用領域將會不斷的拓展和延伸。
鈥(Ho) � �十九世紀後半葉,由於光譜分析法的發現和元素周期表的發表,再加上稀土元素電化學分離工藝的進展,更加促進了新的稀土元素的發現。1879年,瑞典人克利夫發現了鈥元素並以瑞典首都斯德哥爾摩地名命名為鈥(holmium)。 �
�鈥的應用領域目前還有待於進一步開發,用量不是很大,最近,包鋼稀土研究院採用高溫高真空蒸餾提純技術,研製出非稀土雜質含量很低的高純金屬鈥Ho/∑RE>99.9%。
目前鈥的主要用途有:
(1)用作金屬鹵素燈添加劑,金屬鹵素燈是一種氣體放電燈,它是在高壓汞燈基礎上
發展起來的,其特點是在燈泡里充有各種不同的稀土鹵化物。目前主要使用的
是稀土碘化物,在氣體放電時發出不同的譜線光色。在鈥燈中採用的工作物質
是碘化鈥,在電弧區可以獲得較高的金屬原子濃度,從而大大提高了輻射效能。
(2)鈥可以用作釔鐵或釔鋁石榴石的添加劑;
(3)摻鈥的釔鋁石榴石(Ho:YAG)可發射2μm激光,人體組織對2μm激光吸收率高,
幾乎比Hd:YAG高3個數量級。所以用Ho:YAG激光器進行醫療手術時,不但可以
提高手術效率和精度,而且可使熱損傷區域減至更小。鈥晶體產生的自由光
束可消除脂肪而不會產生過大的熱量,從而減少對健康組織產生的熱損傷,據
報道美國用鈥激光治療青光眼,可以減少患者手術的痛苦。我國2μm激光晶體
的水平已達到國際水平,應大力開發生產這種激光晶體。
(4)在磁致伸縮合金Terfenol-D中,也可以加入少量的鈥,從而降低合金飽和磁化
所需的外場。
(5)另外用摻鈥的光纖可以製作光纖激光器、光纖放大器、光纖感測器等等光通訊器
件在光纖通信迅猛的今天將發揮更重要的作用。
鉺(Er) ��1843年,瑞典的莫桑德發現了鉺元素(Erbium)。鉺的光學性質非常突出,一直是人們關注的問題:
(1)Er3+在1550nm處的光發射具有特殊意義,因為該波長正好位於光纖通訊的光學
纖維的最低損失,鉺離子(Er3+)受到波長980nm、1480nm的光激發後,從基態
4I15/2躍遷至高能態4I13/2,當處於高能態的Er3+再躍遷回至基態時發射出
1550nm波長的光,石英光纖可傳送各種不同波長的光,但不同的光光衰率不同,
1550nm頻帶的光在石英光纖中傳輸時光衰減率最低(0.15分貝/公里),幾乎為
下限極限衰減率。因此,光纖通信在1550nm處作信號光時,光損失最小。這樣,
如果把適當濃度的鉺摻入合適的基質中,可依據激光原理作用,放大器能夠補
償通訊系統中的損耗,因此在需要放大波長1550nm光信號的電訊網路中,摻鉺
光纖放大器是必不可少的光學器件,目前摻鉺的二氧化硅纖維放大器已實現商業
化。據報道,為避免無用的吸收,光纖中鉺的摻雜量幾十至幾百ppm。光纖通信的
迅猛發展,將開辟鉺的應用新領域。
(2)另外摻鉺的激光晶體及其輸出的1730nm激光和1550nm激光對人的眼睛安全,大
氣傳輸性能較好,對戰場的硝煙穿透能力較強,保密性好,不易被敵人探測,照
射軍事目標的對比度較大,已製成軍事上用的對人眼安全的攜帶型激光測距儀。
(3)Er3+加入到玻璃中可製成稀土玻璃激光材料,是目前輸出脈沖能量最大,輸出
功率最高的固體激光材料。
(4)Er3+還可做稀土上轉換激光材料的激活離子。
(5)另外鉺也可應用於眼鏡片玻璃、結晶玻璃的脫色和著色等。
銩(Tm) ��銩元素是1879年瑞典的克利夫發現的,並以斯堪迪那維亞(Scandinavia)的舊名Thule命名為銩(Thulium)。 �
�銩的主要用途有以下幾個方面:
(1)銩用作醫用輕便X光機射線源,銩在核反應堆內輻照後產生一種能發射X射線的同位素,可用來製造攜帶型血液輻照儀上,這種輻射儀能使銩-169受到高中子束的作用轉變為銩-170,放射出X射線照射血液並使白血細胞下降,而正是這些白細胞引起器官移植排異反應的,從而減少器官的早期排異反應。
(2)銩元素還可以應用於臨床診斷和治療腫瘤,因為它對腫瘤組織具有較高親合性,重稀土比輕稀土親合性更大,尤其以銩元素的親合力最大。
(3)銩在X射線增感屏用熒光粉中做激活劑LaOBr:Br(藍色),達到增強光學靈敏度,因而降低了X射線對人的照射和危害,與以前鎢酸鈣增感屏相比可降低X射線劑量50%,這在醫學應用具有重要現實的意義。
(4)銩還可在新型照明光源 金屬鹵素燈做添加劑。
(5)Tm3+加入到玻璃中可製成稀土玻璃激光材料,這是目前輸出脈沖量最大,輸出功率最高的固體激光材料。Tm3+也可做稀土上轉換激光材料的激活離子。
鐿(Yb) ��1878年,查爾斯(Jean Charles)和馬利格納克(G.de Marignac)在"鉺"中發現了新的稀土元素,這個元素由伊特必(Ytterby)命名為鐿(Ytterbium)。 �
�鐿的主要用途有(1)作熱屏蔽塗層材料。鐿能明顯地改善電沉積鋅層的耐蝕性,而且含鐿鍍層比不含鐿鍍層晶粒細小,均勻緻密。(2)作磁致伸縮材料。這種材料具有超磁致伸縮性即在磁場中膨脹的特性。該合金主要由鐿/鐵氧體合金及鏑/鐵氧體合金構成,並加入一定比例的錳,以便產生超磁致伸縮性。(3)用於測定壓力的鐿元件,試驗證明,鐿元件在標定的壓力范圍內靈敏度高,同時為鐿在壓力測定應用方面開辟了一個新途徑。(4)磨牙空洞的樹脂基填料,以替換過去普遍使用銀汞合金。(5)日本學者成功地完成了摻鐿釓鎵石榴石埋置線路波導激光器的制備工作,這一工作的完成對激光技術的進一步發展很有意義。另外,鐿還用於熒光粉激活劑、無線電陶瓷、電子計算機記憶元件(磁泡)添加劑、和玻璃纖維助熔劑以及光學玻璃添加劑等。
鑥(Lu) ��1907年,韋爾斯巴赫和尤貝恩(G.Urn)各自進行研究,用不同的分離方法從"鐿"中又發現了一個新元素,韋爾斯巴赫把這個元素取名為Cp(Cassiopeium),尤貝恩根據巴黎的舊名lutece將其命名為Lu(Lutetium)。後來發現Cp和Lu是同一元素,便統一稱為鑥。 �
�鑥的主要用途有(1)製造某些特殊合金。例如鑥鋁合金可用於中子活化分析。(2)穩定的鑥核素在石油裂化、烷基化、氫化和聚合反應中起催化作用。(3)釔鐵或釔鋁石榴石的添加元素,改善某些性能。(4)磁泡貯存器的原料。(5)一種復合功能晶體摻鑥四硼酸鋁釔釹,屬於鹽溶液冷卻生長晶體的技術領域,實驗證明,摻鑥NYAB晶體在光學均勻性和激光性能方面均優於NYAB晶體。(6)經國外有關部門研究發現,鑥在電致變色顯示和低維分子半導體中具有潛在的用途。此外,鑥還用於能源電池技術以及熒光粉的激活劑等。
釔(Y) �� 1788年,一位以研究化學和礦物學、收集礦石的業余愛好者瑞典軍官卡爾·阿雷尼烏斯(Karl Arrhenius)在斯德哥爾摩灣外的伊特必村(Ytterby),發現了外觀象瀝青和煤一樣的黑色礦物,按當地的地名命名為伊特必礦(Ytterbite)。1794年芬蘭化學家約翰·加多林分析了這種伊特必礦樣品。發現其中除鈹、硅、鐵的氧化物外,還含有38%的未知元素的氧化物棗"新土"。1797年,瑞典化學家埃克貝格(Anders Gustaf Ekeberg)確認了這種"新土",命名為釔土(Yttria,釔的氧化物之意)。 ��
釔是一種用途廣泛的金屬,主要用途有:(1)鋼鐵及有色合金的添加劑。FeCr合金通常含0.5-4%釔,釔能夠增強這些不銹鋼的抗氧化性和延展性;MB26合金中添加適量的富釔混合稀土後,合金的綜合性能得到明顯的改善,可以替代部分中強鋁合金用於飛機的受力構件上;在Al-Zr合金中加入少量富釔稀土,可提高合金導電率;該合金已為國內大多數電線廠採用;在銅合金中加入釔,提高了導電性和機械強度。
(2)含釔6%和鋁2%的氮化硅陶瓷材料,可用來研製發動機部件。(3)用功率400瓦的釹釔鋁石榴石激光束來對大型構件進行鑽孔、切削和焊接等機械加工。(4)由Y-Al石榴石單晶片構成的電子顯微鏡熒光屏,熒光亮度高,對散射光的吸收低,抗高溫和抗機械磨損性能好。(5)含釔達90%的高釔結構合金,可以應用於航空和其它要求低密度和高熔點的場合。
(6)目前倍受人們關注的摻釔SrZrO3高溫質子傳導材料,對燃料電池、電解池和要求氫溶解度高的氣敏元件的生產具有重要的意義。此外,釔還用於耐高溫噴塗材料、原子能反應堆燃料的稀釋劑、永磁材料添加劑以及電子工業中作吸氣劑等。
鈧(Sc) � �1879年,瑞典的化學教授尼爾森(L.F.Nilson, 1840~1899)和克萊夫(P.T.Cleve, 1840~1905)差不多同時在稀有的礦物硅鈹釔礦和黑稀金礦中找到了一種新元素。他們給這一元素定名為"Scandium"(鈧),鈧就是門捷列夫當初所預言的"類硼"元素。他們的發現再次證明了元素周期律的正確性和門捷列夫的遠見卓識。 ��鈧比起釔和鑭系元素來,由於離子半徑特別小,氫氧化物的鹼性也特別弱,因此,鈧和稀土元素混在一起時,用氨(或極稀的鹼)處理,鈧將首先析出,故應用"分級沉澱"法可比較容易地把它從稀土元素中分離出來。另一種方法是利用硝酸鹽的分極分解進行分離,由於硝酸鈧最容易分解,從而達到分離的目的。 �
�用電解的方法可製得金屬鈧,在煉鈧時將ScCl3、KCl、LiCl共熔,以熔融的鋅為陰極電解之,使鈧在鋅極上析出,然後將鋅蒸去可得金屬鈧。另外,在加工礦石生產鈾、釷和鑭系元素時易回收鈧。鎢、錫礦中綜合回收伴生的鈧也是鈧的重要來源之一。 鈧在化合物中主要呈3價態,在空氣中容易氧化成Sc2O3而失去金屬光澤變成暗灰色。 ��
鈧能與熱水作用放出氫,也易溶於酸,是一種強還原劑。 � �鈧的氧化物及氫氧化物只顯鹼性,但其鹽灰幾乎不能水解。鈧的氯化物為白色結晶,易溶於水並能在空氣中潮解。 ��在冶金工業中,鈧常用於製造合金(合金的添加劑),以改善合金的強度、硬度和耐熱和性能。如,在鐵水中加入少量的鈧,可顯著改善鑄鐵的性能,少量的鈧加入鋁中,可改善其強度和耐熱性。 ��在電子工業中,鈧可用作各種半導體器件,如鈧的亞硫酸鹽在半導體中的應用已引起了國內外的注意,含鈧的鐵氧體在計算機磁芯中也頗有前途。 ��在化學工業上,用鈧化合物作酒精脫氫及脫水劑,生產乙烯和用廢鹽酸生產氯時的高效催化劑。 � �在玻璃工業中,可以製造含鈧的特種玻璃。 ��在電光源工業中,含鈧和鈉製成的鈧鈉燈,具有效率高和光色正的優點。 ��
自然界中鈧均以45Sc形式存在,另外,鈧還有9種放射性同位素,即40~44Sc和46~49Sc。其中,46Sc作為示蹤劑,已在化工、冶金及海洋學等方面使用。在醫學上,國外還有人研究用46Sc來醫治癌症 稀土資源。
稀土一詞是歷史遺留下來的名稱。稀土元素是從18世紀末葉開始陸續發現,當時人們常把不溶於水的固體氧化物稱為土。稀土一般是以氧化物狀態分離出來的,又很稀少,因而得名為稀土。通常把鑭、鈰、鐠、釹、鉕、釤、銪稱為輕稀土或鈰組稀土;把釓、鋱、鏑、鈥、鉺、銩、鐿、鑥釔稱為重稀土或釔組稀土。也有的根據稀土元素物理化學性質的相似性和差異性,除鈧之外(有的將鈧劃歸稀散元素),劃分成三組,即輕稀土組為鑭、鈰、鐠、釹、鉕;中稀土組為釤、銪、釓、鋱、鏑;重稀土組為鈥、鉺、銩、鐿、鑥、釔。
這些稀土元素的發現,從1794年芬蘭人加多林(J.Gadolin)分離出釔到1947年美國人馬林斯基(J.A.Marinsky)等製得鉕,歷時150多年。其中大部分稀土元素是歐洲的一些礦物學家、化學家、冶金學家等發現製取的。鉕是美國人馬林斯基、格蘭德寧(L.E.Glendenin)和科列爾(C.D.Coryell)用離子交換分離,在鈾裂變產物的稀土元素中獲得的。過去認為自然界中不存在鉕,直到1965年,芬蘭一家磷酸鹽工廠在處理磷灰石時發現了痕量的鉕。
編輯本段【稀土元素的性質與應用】
大多數稀土金屬呈現順磁性。釓在0℃時比鐵具更強的鐵磁性。鋱、鏑、鈥、鉺等在低溫下也呈現鐵磁性,鑭、鈰的低熔點和釤、銪、鐿的高蒸氣壓表現出稀土金屬的物理性質有極大差異。釤、銪、釔的熱中子吸收截面比廣泛用於核反應堆控制材料的鎘、硼還大。稀土金屬具有可塑性,以釤和鐿為最好。除鐿外,釔組稀土較鈰組稀土具有更高的硬度。
稀土表面積研究是非常重要的,稀土的表面積檢測數據只有採用BET方法檢測出來的結果才是真實可靠的,國內目前有很多儀器只能做直接對比法的檢測,現在國內也被淘汰了。目前國內外比表面積測試統一採用多點BET法,國內外製定出來的比表面積測定標准都是以BET測試方法為基礎的,請參看我國國家標准(GB/T 19587-2004)-氣體吸附BET原理測定固態物質比表面積的方法。比表面積檢測其實是比較耗費時間的工作,由於樣品吸附能力的不同,有些樣品的測試可能需要耗費一整天的時間,如果測試過程沒有實現完全自動化,那測試人員就時刻都不能離開,並且要高度集中,觀察儀表盤,操控旋鈕,稍不留神就會導致測試過程的失敗,這會浪費測試人員很多的寶貴時間。真正完全自動化智能化比表面積測試儀產品,才符合測試儀器行業的國際標准,同類國際產品全部是完全自動化的,人工操作的儀器國外早已經淘汰。真正完全自動化智能化比表面積分析儀產品,將測試人員從重復的機械式操作中解放出來,大大降低了他們的工作強度,培訓簡單,提高了工作效率。真正完全自動化智能化比表面積測定儀產品,大大降低了人為操作導致的誤差,提高測試精度。
稀土金屬已廣泛應用於電子、石油化工、冶金、機械、能源、輕工、環境保護、農業等領域。應用稀土可生產熒光材料、稀土金屬氫化物電池材料、電光源材料、永磁材料、儲氫材料、催化材料、精密陶瓷材料、激光材料、超導材料、磁致伸縮材料、磁致冷材料、磁光存儲材料、光導纖維材料等。
我國擁有豐富的稀土礦產資源,成礦條件優越,堪稱得天獨厚,探明的儲量居世界之首,為發展我國稀土工業提供了堅實的基礎。

❽ 稀土的作用是什麼

稀土的作用!!!!! 為什麼「愛國者」導彈能比較輕易地擊落「飛毛腿」?為什麼盡管美製M1和蘇制T-72坦克的主炮直射距離差距並不大,但前者卻總是能更早開火,而且打得更准?為什麼F-22戰斗機可以超音速巡航?…… 這些「為什麼」勾勒出當今軍事科技的巨大進步,也同時勾勒出了近20年世界的動盪與沖突。針對每一個「為什麼」,都有其具體而明確的答案。不過,從材料科學的角度,「稀土」能夠一次性解決上述所有問題。 稀土的開發應用近幾十年來為軍事科技提供了推力強勁的引擎。海灣戰爭中那些匪夷所思的軍事奇跡,美軍在冷戰後局部戰爭中所表現出的對戰爭進程的非對稱性控制能力,從一定意義上說,正是稀土成就了這一切。 正因如此,稀土的開發利用也孕育了巨大的危險。一方面,越來越多的國家、軍事勢力為了獲得對對手的非對稱性控制能力,而參與稀土爭奪與研發,孕育了軍備競賽的風險;另一方面,獲得這種能力的國家更傾向於以威脅或戰爭解決爭端。對此,中國作為稀土儲量世界第一的大國,有必要從源頭上為這種軍備競賽降,嚴格限制稀土開采,立刻禁止稀土出口。 事實上,中國對稀土開發不可謂不重視。早在上世紀50年代,周恩來就把稀土開發列入中國第一個科技發展規劃。1975年,中國便成立了稀土領導小組,即便機構幾多調整,但專門的稀土行業管理機構卻一直得以保留。1991年,稀土被列入國家保護礦種。從稀土保護的策面來看,專門的機構,穩定的行業策,國家一以貫之的總體控制,即便中國石油也沒有這樣的待遇。但是,稀土產業幾十年發展的成果,基本上還停留在低水平賣資源的水平。 對於稀土生產的現狀,國土資源部從1999年以來進行過無數次的清理工作,針對的問題包括濫挖濫采、產能過剩、秩序混亂,採取的措施包括總量控制、毀非法礦井、沒收生產設備、司法介入、許可證、與基層簽訂責任狀、與礦山簽訂合同書……2005年,商務部開始用稅收控制稀土出口。這些措施力度之強,持續時間之長,幾乎達到了管理部門的權力極限。 然而亂象依舊。有人曾總結中國稀土有七大難解之謎:1.以產業策為導向的宏觀調控始終難以奏效;2.調整產業結構和控制生產總量的策一敗再敗;3.可持續發展開采無法實行;4.以統一規劃為方針的加強管理措施難以實施;5.通過技術創新促進產業升級的願望永遠只是願望;6.依靠聯合重組實現行業自律的對策無從下手;7.強化推廣應用從而提高產品附加值的目標至今達不到。 就在這樣的亂象之中,中國稀土可開采儲量從十多年前的佔世界80%,降到了如今的52%。若繼續現有的生產經營模式,也許20到50年後,中國就將變成稀土小國。如果有一天,中國認識到稀土的價值,而希望從世界購買,那麼等待中國的就將是天價。 稀土,令武器更冷血 稀土是關繫到世界和平與國家安全的戰略性金屬。為什麼「愛國者」導彈能比較輕易擊毀「飛毛腿」導彈?這得益於前者精確制導系統的出色工作。其制導系統中使用了大約4公斤的釤鈷磁體和釹鐵硼磁體用於電子束聚焦,釤、釹是稀土元素。 為什麼M1坦克能做到先敵發現?因為該坦克所裝備摻釹釔鋁石榴石激光測距機,在晴朗的白天可以達到近4000米的觀瞄距離,而T-72的激光測距機能看到2000米就算不錯。而在夜間,加入稀土元素鑭的夜視儀又成為伊拉克軍隊的夢魘。 至於F-22超音速巡航的功能,則拜其強大的發動機以及輕而堅固的機身所賜,它們都大量使用稀土科技造就的特種材料。比如F119發動機葉片以及燃燒室使用了阻燃鈦合金,這種鈦合金的製造據說是使用了錸;而F-22的機身就更加是用稀土強化的鎂鈦合金武裝。否則,超音速巡航中,F119強大的動力足以摧毀它自己。 上述種種還只是窺豹一斑。事實上,凡稱得上高技術的兵器幾乎無一沒有稀土的身影;更致命的是,稀土往往集中在使這些武器化腐朽為神奇的最關鍵部位。比如「愛國者」除了制導系統,彈體控制翼面等關鍵部位也是用稀土合金;一些先進坦克的裝甲用稀土材料後,防彈性能更好;還有美國那些掌控戰場形勢的「千里眼」、「順風耳」中用稀土科技造就的大功率行波管,這使得其工作更可靠,抗干擾性更強…… 簡單說,相比傳統兵器,高技術兵器的優點在於其更方便、更靈敏、更准確、更容易操縱。這些提起來容易,但卻集中體現了當今材料科學、電子科學以及工程製造的諸多最高成就。而這些成就的獲得,往往是源於稀土的某些特殊功能的發現和應用。 稀土有工業「維生素」之稱,由於其具有優良的光電磁等物理特性,能與其他材料組成性能各異、品種繁多的新型材料,其最顯著的功能就是大幅度提高其他產品的質量和性能。比如大幅度提高用於製造坦克、飛機、導彈的鋼材、鋁合金、鎂合金、鈦合金的戰術性能。而且,稀土同樣是電子、激光、核工業、超導等諸多高科技的潤滑劑。稀土科技一旦用於軍事,必然帶來軍事科技的躍升。從一定意義上說,美軍在冷戰後幾次局部戰爭中壓倒性控制,以及能夠對敵人肆無忌憚地公開戮,正緣於稀土科技領域的超人一等。

❾ 稀土元素做形態提取的溶液怎麼保存

你說的不太詳細,什麼稀土,什麼元素,什麼溶液?

❿ 稀土是什麼

稀土是化學周期表中鑭系元素和鈧、釔共十七種金屬元素的總稱。自然界中有250 種稀土礦。

根據稀土元素原子電子層結構和物理化學性質,以及它們在礦物中共生情況和不同的離子半徑可產生不同性質的特徵,十七種稀土元素通常分為兩組:

1、輕稀土包括:鑭、鈰、鐠、釹、鉕、釤、銪。

2、重稀土包括:釓、鋱、鏑、鈥、鉺、銩、鐿、鑥、鈧、釔。

(10)稀土可以水下存儲嗎擴展閱讀:

稀土的常見類型

1、獨居石

獨居石(Monazite)又名磷鈰鑭礦。

晶體結構及形態:單斜晶系,斜方柱晶類。晶體成板狀,晶面常有條紋,有時為柱、錐、粒狀。

物理性質:呈黃褐色、棕色、紅色,間或有綠色。半透明至透明。條痕白色或淺紅黃色。具有強玻璃光澤。硬度5.0~5.5。性脆。比重4.9~5.5。電磁性中弱。在X射線下發綠光。在陰極射線下不發光。

生成狀態:產在花崗岩及花崗偉晶岩中;稀有金屬碳酸岩中;雲英岩與石英岩中;雲霞正長岩、長霓岩與鹼性正長偉晶岩中;阿爾卑斯型脈中;混合岩中;及風化殼與砂礦中。

用途:主要用來提取稀土元素。

2、氟碳鈰礦

晶體結構及形態:六方晶系。復三方雙錐晶類。晶體呈六方柱狀或板狀。細粒狀集合體。

物理性質:黃色、紅褐色、淺綠或褐色。玻璃光澤、油脂光澤,條痕呈白色、黃色,透明至半透明。硬度4~4.5,性脆,比重4.72~5.12,有時具放射性、具弱磁性。在薄片中透明,在透射光下無色或淡黃色,在陰極射線下不發光。

生成狀態:產於稀有金屬碳酸岩中;花崗岩及花崗偉晶岩中;與花崗正長岩有關的石英脈中;石英─鐵錳碳酸鹽岩脈中;砂礦中。

用途:它是提取鈰族稀土元素的重要礦物原料。鈰族元素可用於製作合金,提高金屬的彈性、韌性和強度,是製作噴氣式飛機、導彈、發動機及耐熱機械的重要零件。亦可用作防輻射線的防護外殼等。此外,鈰族元素還用於製作各種有色玻璃。

3、磷釔礦

物理性質:黃色、紅褐色,有時呈黃綠色,亦呈棕色或淡褐色。條痕淡褐色。玻璃光澤,油脂光澤。硬度4~5,比重4.4~5.1,具有弱的多色性和放射性。

生成狀態:主要產於花崗岩、花崗偉晶岩中。亦產於鹼性花崗岩以及有關的礦床中。在砂礦中亦有產出。 用途:大量富集時,用作提煉稀土元素的礦物原料。