當前位置:首頁 » 密碼管理 » dna密碼在哪裡
擴展閱讀
webinf下怎麼引入js 2023-08-31 21:54:13
堡壘機怎麼打開web 2023-08-31 21:54:11

dna密碼在哪裡

發布時間: 2022-05-09 23:17:46

Ⅰ 什麼是基因密碼

基因密碼又稱密碼子、遺傳密碼子、三聯體密碼。指信使RNA(mRNA)分子上從5'端到3'端方向,由起始密碼子AUG開始,每三個核苷酸組成的三聯體。

它決定肽鏈上每一個氨基酸和各氨基酸的合成順序,以及蛋白質合成的起始、延伸和終止。遺傳密碼是一組規則,將DNA或RNA序列以三個核苷酸為一組的密碼子轉譯為蛋白質的氨基酸序列,以用於蛋白質合成。

幾乎所有的生物都使用同樣的遺傳密碼,稱為標准遺傳密碼;即使是非細胞結構的病毒,它們也是使用標准遺傳密碼。但是也有少數生物使用一些稍微不同的遺傳密碼。

(1)dna密碼在哪裡擴展閱讀:

遺傳密碼的發現是20世紀50年代的一項奇妙想像和嚴密論證的偉大結晶。mRNA由四種含有不同鹼基腺嘌呤(簡稱A)、尿嘧啶(簡稱U)、胞嘧啶(簡稱C)、鳥嘌呤(簡稱G)的核苷酸組成。最初科學家猜想,一個鹼基決定一種氨基酸,那就只能決定四種氨基酸,顯然不夠決定生物體內的二十種氨基酸。那麼二個鹼基結合在一起,決定一個氨基酸,就可決定十六種氨基酸,顯然還是不夠。

如果三個鹼基組合在一起決定一個氨基酸,則有六十四種組合方式(4 *4*4=64)。前蘇聯科學家喬治伽莫夫(George Gamow)最早指出需要以三個核酸一組才能為20個氨基酸編碼。克里克的實驗首次證明密碼子由三個DNA鹼基組成。

1961年,美國國家衛生院的海因里希 馬太(Heinrich Matthaei)與馬歇爾 沃倫尼倫伯格(Marshall Warren Nirenberg)在無細胞系統(Cell-free system)環境下,把一條只由尿嘧啶(U)組成的RNA轉釋成一條只有苯丙氨酸(Phe)的多肽,由此破解了首個密碼子(UUU -> Phe)。

隨後科拉納(Har Gobind Khorana)破解了其它密碼子,接著霍利(Robett W.Holley)發現了負責轉錄過程的tRNA。1968年,科拉納、霍利和尼倫伯格分享了諾貝爾生理學或醫學獎。

Ⅱ 對於人類來說,DNA存在於哪裡

對於人類來說,DNA存在於細胞裡面的細胞核中。

細胞核內能被鹼性染料染成深色的物質叫做染色體,是由DNA和蛋白質組成,基因是染色體上具有控制生物性狀的DNA片段。DNA上有遺傳信息,它的結構像一個螺旋形的梯子。

DNA物質簡介:

DNA由脫氧核苷酸組成的大分子聚合物。脫氧核苷酸由鹼基、脫氧核糖和磷酸構成。其中鹼基有4種:腺嘌呤(A)、鳥嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C)。

DNA分子結構中,兩條多脫氧核苷酸鏈圍繞一個共同的中心軸盤繞,構成雙螺旋結構。脫氧核糖-磷酸鏈在螺旋結構的外面,鹼基朝向裡面。兩條多脫氧核苷酸鏈反向互補,通過鹼基間的氫鍵形成的鹼基配對相連,形成相當穩定的組合。

在細胞分裂之前,DNA復制過程復制了遺傳信息,這避免了在不同細胞世代之間的轉變中遺傳信息的丟失。

在真核生物中,DNA存在於細胞核內稱為染色體的結構中。

在沒有細胞核的其它生物中,DNA要麼存在於染色體中要麼存在於其它組織。

在染色體中,染色質蛋白如組蛋白、共存蛋白和凝聚蛋白將DNA在一個有序的結構中。

這些結構指導遺傳密碼和負責轉錄的蛋白質之間的相互作用,有助於控制基因的轉錄。

Ⅲ DNA的密碼到底是什麼樣的

DNA即脫氧核糖核酸(英文Deoxyribonucleic acid的縮寫),又稱去氧核糖核酸,是染色體的主要組成成分,同時也是組成基因的材料。有時被稱為「遺傳微粒」,因為在繁殖過程中,父代把它們自己DNA的一部分復制傳遞到子代中,從而完成性狀的傳播。原核細胞的染色體是一個長DNA分子。真核細胞核中有不止一個染色體,每個染色體也只含一個DNA分子。不過它們一般都比原核細胞中的DNA分子大而且和蛋白質結合在一起。DNA分子的功能是貯存決定物種性狀的幾乎所有蛋白質和RNA分子的全部遺傳信息;編碼和設計生物有機體在一定的時空中有序地轉錄基因和表達蛋白完成定向發育的所有程序;初步確定了生物獨有的性狀和個性以及和環境相互作用時所有的應激反應.除染色體DNA外,有極少量結構不同的DNA存在於真核細胞的線粒體和葉綠體中。DNA病毒的遺傳物質也是DNA,極少數為RNA. DNA分子特性 穩定性DNA分子的雙螺旋結構是相對穩定的。這是因為在DNA分子雙螺旋結構的內側,通過氫鍵形成的鹼基對,使兩條脫氧核苷酸長鏈穩固地並聯起來。另外,鹼基對之間縱向的相互作用力也進一步加固了DNA分子的穩定性。各個鹼基對之間的這種縱向的相互作用力叫做鹼基堆集力,它是芳香族鹼基π電子間的相互作用引起的。現在普遍認為鹼基堆集力是穩定DNA結構的最重要的因素。再有,雙螺旋外側負電荷的磷酸基團同帶正電荷的陽離子之間形成的離子鍵,可以減少雙鏈間的靜電斥力,因而對DNA雙螺旋結構也有一定的穩定作用。 多樣性 DNA分子由於鹼基對的數量不同,鹼基對的排列順序千變萬化,因而構成了DNA分子的多樣性。例如,一個具有4 000個鹼基對的DNA分子所攜帶的遺傳信息是4種,即10種。 特異性 不同的DNA分子由於鹼基對的排列順序存在著差異,因此,每一個DNA分子的鹼基對都有其特定的排列順序,這種特定的排列順序包含著特定的遺傳信息,從而使DNA分子具有特異性。 發現,發展 DNA結構的發現是科學史上最具傳奇性的「章節」之一。發現DNA結構是劃時代的成就,但發現它的方法是模型建構法,模型建構法就像小孩子拼圖游戲一樣的「拼湊」法。而在這場「拼湊」中表現最出色的是沃森和克里克。 1928年4月6日,沃森出生於美國芝加哥。16歲就在芝加哥大學畢業,獲得動物學學士學位,在生物學方面開始顯露才華。22歲時取得博士學位,隨後沃森來到英國劍橋大學的卡文迪什實驗室,結識了早先已在這里工作的克里克,從此開始了兩人傳奇般的合作生涯。克里克於1916年6月8日生於英格蘭的北安普敦,21歲在倫敦大學畢業。二戰結束後,來到劍橋的卡文迪什實驗室,克里克和沃森一樣,對DNA有著濃厚的興趣,從物理學轉向研究生物學。 當時人們已經知道,DNA是一種細長的高分子化合物,由一系列脫氧核苷酸鏈構成,脫氧核苷酸又是由脫氧核糖、磷酸和含氮鹼基組成,鹼基有4種。在1951年,很多科學家對DNA的結構研究展開了一場競賽。當時有兩個著名的DNA分子研究小組,一個是以著名的物理學家威爾金斯和化學家富蘭克林為首的英國皇家學院研究小組,他們主要用X射線衍射來研究DNA結構。一個是以著名化學家鮑林為首的美國加州理工大學研究小組,他們主要用模型建構法研究DNA結構,並且已經用該方法發現蛋白質a螺旋。 1951年2月,威爾金斯將富蘭克林拍的一張非常精美的DNA的X光衍射照片在義大利舉行的生物大分子結構會議上展示,一直對DNA有濃厚興趣的沃森看到這張圖時,激動得話也說不出來,他的心怦怦直跳,根據此圖他斷定DNA的結構是一個螺旋體。他打定主意要製作一個DNA模型。他把這種想法告訴了他的合作者克里克,得到了克里克的認可。 沃森和克里克構建DNA分子結構模型的工作始於1951年秋。他們用模型構建法,仿照著名化學家鮑林構建蛋白質α螺旋模型的方法,根據結晶學的數據,用紙和鐵絲搭配脫氧核苷酸。 他們構建了一個又一個模型,都被否定了。但沃森堅持認為,DNA分子可能是一種雙鏈結構。因為自然界中的事物,很多是成雙成對的,細胞中的染色體也是成對的。之後他們分別完成了以脫氧核糖和磷酸交替排列為基本骨架,鹼基排在外面的雙螺旋結構(如圖一),和以脫氧核糖和磷酸交替排 列為基本骨架,鹼基排在內部,且同型鹼基配對的雙螺旋結構(如圖二)。 1952年,生物化學家查伽夫訪問劍橋大學時向報道了他對人、豬、牛、羊、細菌和酵母等不同生物DNA進行分析的結果。查伽夫的結果表明,雖然在不同生物的DNA之間,4種脫氧核苷酸的數量和相對比例很不相同,但無論哪種物質的DNA中,都有A=T和G=C,這被稱為DNA化學組成的「查伽夫法則」。1952年7月,查伽夫訪問卡文迪什實驗室時,向克里克詳細解釋了A:T=G:C=1:1的法則。之後,克里克的朋友,理論化學家格里菲斯通過計算表明,DNA的4種脫氧核苷酸中,A必須與T成鍵,G必須與C成鍵。這與查伽夫法則完成一致。隨後,鮑林以前的同事多諾告訴沃森,A-T和G-C配對是靠氫鍵維系的。以上這些工作,就成了沃森和克里克DNA分子模型中A—T配對、G—C配對結構的基礎。 至此,DNA模型已經浮現。2月28日,沃森用紙板做成4種鹼基的模型,將紙板粘到骨架上朝向中心配對,克里克馬上指出,只有兩條單鏈的走向相反才能使鹼基完善配對,這正好與X光衍射資料一致。完整的DNA分子結構模型完成於1953年3月7日。根據這個模型,DNA分子是一個雙螺旋結構,每一個螺旋單位包含10對鹼基,長度為34埃(1埃=10-10米)。螺旋直徑為20埃。4月15日,沃森和克里克關於該模型的第一篇論文在《自然》(Nature)雜志上發表。 DNA分子雙螺旋結構模型的發現,是生物學史上的一座里程碑,它為DNA復制提供了構型上的解釋,使人們對DNA作為基因的物質基礎不再懷疑,並且奠定了分子遺傳學的基礎。DNA雙螺旋模型在科學上的影響是深遠的。 有人說沃森和克里克的諾貝爾獎是站在「巨人的腳趾」上獲得的,我不這么認為,在X光衍射照片的基礎上,運用鮑林研究蛋白質螺旋的方法,綜合DNA化學研究方面的資料,沃森和克里克,特別是沃森,有著更寬廣的眼界,從各專家處汲取所需,而得到新的綜合結果,而且這種綜合結果比其各部分更偉大,這是那些不能聚木為林的專家們無法領悟到的。

Ⅳ 遺傳信息和遺傳密碼子分別位於哪裡

答案A
遺傳信息是指基因中的脫氧核苷酸的排列順序,遺傳密碼是指信使RNA中三個連續的鹼基決定一個氨基酸,這三個連續鹼基構成一個密碼子。

Ⅳ 密碼子分布在哪裡

密碼子分布在細胞核內的脫氧核糖核酸內,也就是DNA里。

密碼子codonm,RNA分子中每相鄰的三個核苷酸編成一組,在蛋白質合成時,代表某一種氨基酸。在蛋白質合成時,代表某一種氨基酸的規律;反密碼子是在tRNA的三葉草形二級結構反密碼臂的中部,可與mRNA中的三聯體密碼子形成鹼基配對的三個相鄰鹼基。

實際上用做

蛋白表達或生產的每種生物,包括大腸桿菌、酵母、植物細胞、昆蟲細胞、哺乳動物細胞,都表現出某種程度的密碼子利用的差異或偏愛。大腸桿菌、酵母和果蠅中編碼豐度高的蛋白質的基因明顯避免低利用率的密碼子。因此,重組蛋白的表達可能受密碼子利用的影響(尤其在異源表達系統中)的事實並不很奇怪。

Ⅵ 遺傳密碼在mRNA上,還是在DNA上那遺傳密碼子呢 詳細解答 詳細

以dna一條鏈為模板經過轉錄形成的mRNA,mRNA上的鹼基序列就是遺傳密碼。mRNA上相鄰的三個鹼基就稱為一個密碼子

Ⅶ 人體基因密碼是什麼

根據細胞生物學和生物化學的研究成果證實,親代的遺傳特徵是通過生殖細胞果所攜帶的基因密碼傳遞給下一代。實際上,除了生植細胞之外,一切生物的體細胞里也有基因密碼存在,起著調節生命新陳代謝過程的作用。
人體里各種組織的每一個細胞都有一套基因密碼。基因密碼儲存在細胞核里的脫氧核糖核酸(簡稱DNA)的分子中。基因密碼通過(轉錄)合成出核糖核酸(簡稱RNA〕,RBA再合成出蛋白質,所合成出的蛋白質可以是催化細胞里新陳代謝過程的酶類,或是多肽激素等具有生理活性的蛋白質,從而由這些活性蛋白質進一步調控細胞的生命活動過程,以上所說的遺傳信息表達過程,被稱之為「中心法則」。
基因密碼是以三聯體形式存在於DNA分子中,以DNA為子中相鄰的三個鹼基代表一個密碼子。鹼是一共有四種,它們是腺嘌呤,烏漂呤。胞嘧啶和胸腺嘧啶,用英文字母A、G、C和T來表示。任何三個鹼基相鄰排列在DNA分子中,就形成一個三聯體密碼,一系列的三聯體密碼構成基因密碼。每一個三聯體密碼都具有一定意義,有的代表轉錄的起始,有的代表轉錄的終止,但是大多數三聯體密碼分別代表一種氨基酸的密碼。所以說,在DNA分子中有序排列的三聯體密碼子形成的基因密碼,是人類進化過程中,長期積累的生命活動進化的信息結晶。

Ⅷ 人類的DNA隱藏著什麼密碼呢有關於人類來源的


5

人類在地球上誕生的時間也不短了,與地球在宇宙中的生存時間相比,卻顯得微不足道,整個宇宙存在太多的未解之謎,人類或許真的是外星人的試驗品。我們一直在外星人的操控范圍內,這些都只是猜測並沒有足夠的論證,你們認為人類是被創造出來的嗎?

Ⅸ DNA包含起始密碼

DNA上沒有密碼子,密碼子在mRNA上,密碼子的定義:mRNA上連續的3個鹼基能決定一個氨基酸,人們把mRNA上連續的三個鹼基成為一個密碼子。起始密碼子也在mRNA上,是翻譯的起點。

Ⅹ 請問什麼叫DNA密碼

現在,人們已基本上了解了遺傳是如何發生的。20世紀的生物學研究發現:人體是由細胞構成的,細胞由細胞膜、細胞質和細胞核等組成。已知在細胞核中有一種物質叫染色體,它主要由一些叫做脫氧核糖核酸(DNA)的物質組成。

生物的遺傳物質存在於所有的細胞中,這種物質叫核酸。核酸由核苷酸聚合而成。每個核苷酸又由磷酸、核糖和鹼基構成。鹼基有五種,分別為腺嘌呤(A)、鳥嘌呤(G)、胞嘧啶(C)、胸腺嘧啶(X)和尿嘧啶(U)。每個核苷酸只含有這五種鹼基中的一種。

單個的核苷酸連成一條鏈,兩條核苷酸鏈按一定的順序排列,然後再扭成「麻花」樣,就構成脫氧核糖核酸(DNA)的分子結構。在這個結構中,每三個鹼基可以組成一個遺傳的「密碼」,而一個DNA上的鹼基多達幾百萬,所以每個DNA就是一個大大的遺傳密碼本,裡面所藏的遺傳信息多得數不清,這種DNA分子就存在於細胞核中的染色體上。它們會隨著細胞分裂傳遞遺傳密碼。

人的遺傳性狀由密碼來傳遞。人有10萬個基因,而每個基因是由密碼來決定的。人的基因中既有相同的部分,又有不同的部分。不同的部分決定人與人的區別,即人的多樣性。人的DNA共有30億個遺傳密碼,排列組成10萬個基因。