當前位置:首頁 » 密碼管理 » md5是什麼密碼演算法不安全了么
擴展閱讀
webinf下怎麼引入js 2023-08-31 21:54:13
堡壘機怎麼打開web 2023-08-31 21:54:11

md5是什麼密碼演算法不安全了么

發布時間: 2022-05-02 15:38:39

1. MD5演算法的漏洞誰知道

不是漏洞,而是能被破解。相關資料如下2004年8月17日的美國加州聖巴巴拉的國際密碼學會議(Crypto』2004)上,來自中國山東大學的王小雲教授做了破譯MD5、HAVAL-128、 MD4和RIPEMD演算法的報告,公布了MD系列演算法的破解結果。宣告了固若金湯的世界通行密碼標准MD5的堡壘轟然倒塌,引發了密碼學界的軒然大波。
令世界頂尖密碼學家想像不到的是,破解MD5之後,2005年2月,王小雲教授又破解了另一國際密碼SHA-1。因為SHA-1在美國等國際社會有更加廣泛的應用,密碼被破的消息一出,在國際社會的反響可謂石破天驚。換句話說,王小雲的研究成果表明了從理論上講電子簽名可以偽造,必須及時添加限制條件,或者重新選用更為安全的密碼標准,以保證電子商務的安全。
MD5破解工程權威網站是為了公開徵集專門針對MD5的攻擊而設立的,網站於2004年8月17日宣布:「中國研究人員發現了完整MD5演算法的碰撞;Wang, Feng, Lai與Yu公布了MD5、MD4、HAVAL-128、RIPEMD-128幾個 Hash函數的碰撞。這是近年來密碼學領域最具實質性的研究進展。使用他們的技術,在數個小時內就可以找到MD5碰撞。……由於這個里程碑式的發現,MD5CRK項目將在隨後48小時內結束」。
在2004年8月之前,國際密碼學界對王小雲這個名字並不熟悉。2004年8月,在美國加州聖芭芭拉召開的國際密碼大會上,並沒有被安排發言的王小雲教授拿著自己的研究成果找到會議主席,沒想到慧眼識珠的會議主席破例給了她15分鍾時間來介紹自己的成果,而通常發言人只被允許有兩三分鍾的時間。王小雲及其研究同工展示了MD5、SHA-0及其他相關雜湊函數的雜湊沖撞。所謂雜湊沖撞指兩個完全不同的訊息經雜湊函數計算得出完全相同的雜湊值。根據鴿巢原理,以有長度限制的雜湊函數計算沒有長度限制的訊息是必然會有沖撞情況出現的。可是,一直以來,電腦保安專家都認為要任意製造出沖撞需時太長,在實際情況上不可能發生,而王小雲等的發現可能會打破這個必然性。就這樣,王小雲在國際會議上首次宣布了她及她的研究小組近年來的研究成果——對MD4、MD5、HAVAL-128和RIPEMD等四個著名密碼演算法的破譯結果。
在公布到第三個成果的時候,會場上已經是掌聲四起,報告不得不一度中斷。報告結束後,所有與會專家對他們的突出工作報以長時間的掌聲,有些學者甚至起立鼓掌以示他們的祝賀和敬佩。由於版本問題,作者在提交會議論文時使用的一組常數和先行標准不同,在發現這一問題之後,王小雲教授立即改變了那個常數,在很短的時間內就完成了新的數據分析,這段有驚無險的小插曲更證明了他們論文的信服力,攻擊方法的有效性,驗證了研究工作的成功。
令世界頂尖密碼學家想像不到的是,破解MD5之後,2005年2月,王小雲與其同事提出SHA-1雜湊函數的雜湊沖撞。因為SHA-1在美國等國際社會有更加廣泛的應用,密碼被破的消息一出,在國際社會的反響可謂石破天驚。換句話說,王小雲的研究成果表明了從理論上講電子簽名可以偽造,必須及時添加限制條件,或者重新選用更為安全的密碼標准,以保證電子商務的安全。
2005年8月,王小雲、姚期智,以及姚期智妻子姚儲楓(即為Knuth起名高德納的人)聯手於國際密碼討論年會尾聲部份提出SHA-1雜湊函數雜湊沖撞演演算法的改良版。此改良版使破解SHA-1時間縮短。
2006年6月8日,王小雲教授於中國科學院第13次院士大會和中國工程院第8次院士大會上以「國際通用Hash函數的破解」獲頒陳嘉庚科學獎信息技術科學獎。 能破解這個的沒多少人.....何況這等工程是有多麻煩

2. md5是什麼東西啊

md5指的是MD5信息摘要演算法。

MD5信息摘要演算法是一種被廣泛使用的密碼散列函數,可以產生出一個128位(16位元組)的散列值(hash value),用於確保信息傳輸完整一致。MD5由美國密碼學家羅納德·李維斯特(Ronald Linn Rivest)設計,於1992年公開,用以取代MD4演算法。

MD5的演算法:

在MD5演算法中,首先需要對信息進行填充,這個數據按位(bit)補充,要求最終的位數對512求模的結果為448。也就是說數據補位後,其位數長度只差64位(bit)就是512的整數倍。即便是這個數據的位數對512求模的結果正好是448也必須進行補位。

補位的實現過程:首先在數據後補一個1bit; 接著在後面補上一堆0bit, 直到整個數據的位數對512求模的結果正好為448。總之,至少補1位,而最多可能補512位。

3. md5是什麼東西

MD5(信息摘要演算法)是一種被廣泛使用的密碼散列函數,可以產生出一個128位(16位元組)的散列值(hash value),用於確保信息傳輸完整一致。

MD5由美國密碼學家羅納德·李維斯特(Ronald Linn Rivest)設計,於1992年公開,用以取代MD4演算法。這套演算法的程序在RFC 1321標准中被加以規范。

1996年後該演算法被證實存在弱點,可以被加以破解,對於需要高度安全性的數據,專家一般建議改用其他演算法,如SHA-2。2004年,證實MD5演算法無法防止碰撞(collision),因此不適用於安全性認證,如SSL公開密鑰認證或是數字簽名等用途。

MD5的原理:

MD5演算法的原理可簡要的敘述為:MD5碼以512位分組來處理輸入的信息,且每一分組又被劃分為16個32位子分組,經過了一系列的處理後,演算法的輸出由四個32位分組組成,將這四個32位分組級聯後將生成一個128位散列值。

以上內容參考:網路-MD5

4. MD5是什麼意思

MD5,即消息摘要演算法(英語:MD5 Message-Digest Algorithm)。是一種被廣泛使用的密碼散列函數,將數據(如一段文字)運算變為另一固定長度值,是散列演算法的基礎原理,可以產生出一個128位(16位元組)的散列值(hash value),用於確保信息傳輸完整一致。

MD5由美國密碼學家羅納德·李維斯特(Ronald Linn Rivest)設計,於1992年公開,用以取代MD4演算法。這套演算法的程序在RFC 1321中被加以規范。

1996年後被證實存在弱點,可以被加以破解,對於需要高度安全性的數據,專家一般建議改用其他演算法,如SHA-2。2004年,證實MD5演算法無法防止碰撞(collision),因此不適用於安全性認證,如SSL公開密鑰認證或是數字簽名等用途。

(4)md5是什麼密碼演算法不安全了么擴展閱讀

MD5在現實中的應用

MD5已經廣泛使用在為文件傳輸提供一定的可靠性方面。例如,伺服器預先提供一個MD5校驗和,用戶下載完文件以後,用MD5演算法計算下載文件的MD5校驗和,然後通過檢查這兩個校驗和是否一致,就能判斷下載的文件是否出錯。

MD5亦有應用於部分網上賭場以保證賭博的公平性,原理是系統先在玩家下注前已生成該局的結果,將該結果的字元串配合一組隨機字元串利用MD5 加密,將該加密字元串於玩家下注前便顯示給玩家,再在結果開出後將未加密的字元串顯示給玩家,玩家便可利用MD5工具加密驗證該字元串是否吻合。

5. md5是什麼

MD5信息摘要演算法(英語:MD5 Message-Digest Algorithm),一種被廣泛使用的密碼散列函數,可以產生出一個128位(16位元組)的散列值(hash value),用於確保信息傳輸完整一致。

MD5由美國密碼學家羅納德·李維斯特(Ronald Linn Rivest)設計,於1992年公開,用以取代MD4演算法。這套演算法的程序在 RFC 1321 標准中被加以規范。

1996年後該演算法被證實存在弱點,可以被加以破解,對於需要高度安全性的數據,專家一般建議改用其他演算法,如SHA-2。2004年,證實MD5演算法無法防止碰撞(collision),因此不適用於安全性認證,如SSL公開密鑰認證或是數字簽名等用途。

用於密碼管理

當我們需要保存某些密碼信息以用於身份確認時,如果直接將密碼信息以明碼方式保存在資料庫中,不使用任何保密措施,系統管理員就很容易能得到原來的密碼信息,這些信息一旦泄露, 密碼也很容易被破譯。

為了增加安全性,有必要對資料庫中需要保密的信息進行加密,這樣,即使有人得到了整個資料庫,如果沒有解密演算法,也不能得到原來的密碼信息。MD5演算法可以很好地解決這個問題,因為它可以將任意長度的輸入串經過計算得到固定長度的輸出,而且只有在明文相同的情況下。

才能等到相同的密文,並且這個演算法是不可逆的,即便得到了加密以後的密文,也不可能通過解密演算法反算出明文。

6. MD5是加密性最強的演算法嗎如果不是,那是什麼演算法還有為什麼進行反反解密時存在失敗性 

沒有所謂的最強,每種演算法都有自己的優勢與弱點,由於MD5是不可逆加密演算法,所以現在還沒有反解密的演算法,現在網上有在線解密都是源數據經過MD5加密後存儲在資料庫中,然後在從中資料庫查詢的。

7. 什麼是MD5

md5的全稱是message-digest algorithm 5(信息-摘要演算法),在90年代初由mit laboratory for computer science和rsa data security inc的ronald l. rivest開發出來,經md2、md3和md4發展而來。它的作用是讓大容量信息在用數字簽名軟體簽署私人密匙前被"壓縮"成一種保密的格式(就是把一個任意長度的位元組串變換成一定長的大整數)。不管是md2、md4還是md5,它們都需要獲得一個隨機長度的信息並產生一個128位的信息摘要。雖然這些演算法的結構或多或少有些相似,但md2的設計與md4和md5完全不同,那是因為md2是為8位機器做過設計優化的,而md4和md5卻是面向32位的電腦。這三個演算法的描述和c語言源代碼在internet rfcs 1321中有詳細的描述(h++p://www.ietf.org/rfc/rfc1321.txt),這是一份最權威的文檔,由ronald l. rivest在1992年8月向ieft提交。

rivest在1989年開發出md2演算法。在這個演算法中,首先對信息進行數據補位,使信息的位元組長度是16的倍數。然後,以一個16位的檢驗和追加到信息末尾。並且根據這個新產生的信息計算出散列值。後來,rogier和chauvaud發現如果忽略了檢驗和將產生md2沖突。md2演算法的加密後結果是唯一的--既沒有重復。

為了加強演算法的安全性,rivest在1990年又開發出md4演算法。md4演算法同樣需要填補信息以確保信息的位元組長度加上448後能被512整除(信息位元組長度mod 512 = 448)。然後,一個以64位二進製表示的信息的最初長度被添加進來。信息被處理成512位damg?rd/merkle迭代結構的區塊,而且每個區塊要通過三個不同步驟的處理。den boer和bosselaers以及其他人很快的發現了攻擊md4版本中第一步和第三步的漏洞。dobbertin向大家演示了如何利用一部普通的個人電腦在幾分鍾內找到md4完整版本中的沖突(這個沖突實際上是一種漏洞,它將導致對不同的內容進行加密卻可能得到相同的加密後結果)。毫無疑問,md4就此被淘汰掉了。

盡管md4演算法在安全上有個這么大的漏洞,但它對在其後才被開發出來的好幾種信息安全加密演算法的出現卻有著不可忽視的引導作用。除了md5以外,其中比較有名的還有sha-1、ripe-md以及haval等。

一年以後,即1991年,rivest開發出技術上更為趨近成熟的md5演算法。它在md4的基礎上增加了"安全-帶子"(safety-belts)的概念。雖然md5比md4稍微慢一些,但卻更為安全。這個演算法很明顯的由四個和md4設計有少許不同的步驟組成。在md5演算法中,信息-摘要的大小和填充的必要條件與md4完全相同。den boer和bosselaers曾發現md5演算法中的假沖突(pseudo-collisions),但除此之外就沒有其他被發現的加密後結果了。

van oorschot和wiener曾經考慮過一個在散列中暴力搜尋沖突的函數(brute-force hash function),而且他們猜測一個被設計專門用來搜索md5沖突的機器(這台機器在1994年的製造成本大約是一百萬美元)可以平均每24天就找到一個沖突。但單從1991年到2001年這10年間,竟沒有出現替代md5演算法的md6或被叫做其他什麼名字的新演算法這一點,我們就可以看出這個瑕疵並沒有太多的影響md5的安全性。上面所有這些都不足以成為md5的在實際應用中的問題。並且,由於md5演算法的使用不需要支付任何版權費用的,所以在一般的情況下(非絕密應用領域。但即便是應用在絕密領域內,md5也不失為一種非常優秀的中間技術),md5怎麼都應該算得上是非常安全的了。

演算法的應用

md5的典型應用是對一段信息(message)產生信息摘要(message-digest),以防止被篡改。比如,在unix下有很多軟體在下載的時候都有一個文件名相同,文件擴展名為.md5的文件,在這個文件中通常只有一行文本,大致結構如:

md5 (tanajiya.tar.gz) =

這就是tanajiya.tar.gz文件的數字簽名。md5將整個文件當作一個大文本信息,通過其不可逆的字元串變換演算法,產生了這個唯一的md5信息摘要。如果在以後傳播這個文件的過程中,無論文件的內容發生了任何形式的改變(包括人為修改或者下載過程中線路不穩定引起的傳輸錯誤等),只要你對這個文件重新計算md5時就會發現信息摘要不相同,由此可以確定你得到的只是一個不正確的文件。如果再有一個第三方的認證機構,用md5還可以防止文件作者的"抵賴",這就是所謂的數字簽名應用。

md5還廣泛用於加密和解密技術上。比如在unix系統中用戶的密碼就是以md5(或其它類似的演算法)經加密後存儲在文件系統中。當用戶登錄的時候,系統把用戶輸入的密碼計算成md5值,然後再去和保存在文件系統中的md5值進行比較,進而確定輸入的密碼是否正確。通過這樣的步驟,系統在並不知道用戶密碼的明碼的情況下就可以確定用戶登錄系統的合法性。這不但可以避免用戶的密碼被具有系統管理員許可權的用戶知道,而且還在一定程度上增加了密碼被破解的難度。

正是因為這個原因,現在被黑客使用最多的一種破譯密碼的方法就是一種被稱為"跑字典"的方法。有兩種方法得到字典,一種是日常搜集的用做密碼的字元串表,另一種是用排列組合方法生成的,先用md5程序計算出這些字典項的md5值,然後再用目標的md5值在這個字典中檢索。我們假設密碼的最大長度為8位位元組(8 bytes),同時密碼只能是字母和數字,共26+26+10=62個字元,排列組合出的字典的項數則是p(62,1)+p(62,2)….+p(62,8),那也已經是一個很天文的數字了,存儲這個字典就需要tb級的磁碟陣列,而且這種方法還有一個前提,就是能獲得目標賬戶的密碼md5值的情況下才可以。這種加密技術被廣泛的應用於unix系統中,這也是為什麼unix系統比一般操作系統更為堅固一個重要原因。

演算法描述

對md5演算法簡要的敘述可以為:md5以512位分組來處理輸入的信息,且每一分組又被劃分為16個32位子分組,經過了一系列的處理後,演算法的輸出由四個32位分組組成,將這四個32位分組級聯後將生成一個128位散列值。

在md5演算法中,首先需要對信息進行填充,使其位元組長度對512求余的結果等於448。因此,信息的位元組長度(bits length)將被擴展至n*512+448,即n*64+56個位元組(bytes),n為一個正整數。填充的方法如下,在信息的後面填充一個1和無數個0,直到滿足上面的條件時才停止用0對信息的填充。然後,在在這個結果後面附加一個以64位二進製表示的填充前信息長度。經過這兩步的處理,現在的信息位元組長度=n*512+448+64=(n+1)*512,即長度恰好是512的整數倍。這樣做的原因是為滿足後面處理中對信息長度的要求。

md5中有四個32位被稱作鏈接變數(chaining variable)的整數參數,他們分別為:a=0x01234567,b=0x89abcdef,c=0xfedcba98,d=0x76543210。

當設置好這四個鏈接變數後,就開始進入演算法的四輪循環運算。循環的次數是信息中512位信息分組的數目。

將上面四個鏈接變數復制到另外四個變數中:a到a,b到b,c到c,d到d。

主循環有四輪(md4隻有三輪),每輪循環都很相似。第一輪進行16次操作。每次操作對a、b、c和d中的其中三個作一次非線性函數運算,然後將所得結果加上第四個變數,文本的一個子分組和一個常數。再將所得結果向右環移一個不定的數,並加上a、b、c或d中之一。最後用該結果取代a、b、c或d中之一。
以一下是每次操作中用到的四個非線性函數(每輪一個)。

f(x,y,z) =(x&y)|((~x)&z)
g(x,y,z) =(x&z)|(y&(~z))
h(x,y,z) =x^y^z
i(x,y,z)=y^(x|(~z))
(&是與,|是或,~是非,^是異或)

這四個函數的說明:如果x、y和z的對應位是獨立和均勻的,那麼結果的每一位也應是獨立和均勻的。
f是一個逐位運算的函數。即,如果x,那麼y,否則z。函數h是逐位奇偶操作符。

假設mj表示消息的第j個子分組(從0到15),<<
ff(a,b,c,d,mj,s,ti)表示a=b+((a+(f(b,c,d)+mj+ti)<< gg(a,b,c,d,mj,s,ti)表示a=b+((a+(g(b,c,d)+mj+ti)<< hh(a,b,c,d,mj,s,ti)表示a=b+((a+(h(b,c,d)+mj+ti)<< ii(a,b,c,d,mj,s,ti)表示a=b+((a+(i(b,c,d)+mj+ti)<<
這四輪(64步)是:

第一輪

ff(a,b,c,d,m0,7,0xd76aa478)
ff(d,a,b,c,m1,12,0xe8c7b756)
ff(c,d,a,b,m2,17,0x242070db)
ff(b,c,d,a,m3,22,0xc1bdceee)
ff(a,b,c,d,m4,7,0xf57c0faf)
ff(d,a,b,c,m5,12,0x4787c62a)
ff(c,d,a,b,m6,17,0xa8304613)
ff(b,c,d,a,m7,22,0xfd469501)
ff(a,b,c,d,m8,7,0x698098d8)
ff(d,a,b,c,m9,12,0x8b44f7af)
ff(c,d,a,b,m10,17,0xffff5bb1)
ff(b,c,d,a,m11,22,0x895cd7be)
ff(a,b,c,d,m12,7,0x6b901122)
ff(d,a,b,c,m13,12,0xfd987193)
ff(c,d,a,b,m14,17,0xa679438e)
ff(b,c,d,a,m15,22,0x49b40821)

第二輪

gg(a,b,c,d,m1,5,0xf61e2562)
gg(d,a,b,c,m6,9,0xc040b340)
gg(c,d,a,b,m11,14,0x265e5a51)
gg(b,c,d,a,m0,20,0xe9b6c7aa)
gg(a,b,c,d,m5,5,0xd62f105d)
gg(d,a,b,c,m10,9,0x02441453)
gg(c,d,a,b,m15,14,0xd8a1e681)
gg(b,c,d,a,m4,20,0xe7d3fbc8)
gg(a,b,c,d,m9,5,0x21e1cde6)
gg(d,a,b,c,m14,9,0xc33707d6)
gg(c,d,a,b,m3,14,0xf4d50d87)
gg(b,c,d,a,m8,20,0x455a14ed)
gg(a,b,c,d,m13,5,0xa9e3e905)
gg(d,a,b,c,m2,9,0xfcefa3f8)
gg(c,d,a,b,m7,14,0x676f02d9)
gg(b,c,d,a,m12,20,0x8d2a4c8a)

第三輪

hh(a,b,c,d,m5,4,0xfffa3942)
hh(d,a,b,c,m8,11,0x8771f681)
hh(c,d,a,b,m11,16,0x6d9d6122)
hh(b,c,d,a,m14,23,0xfde5380c)
hh(a,b,c,d,m1,4,0xa4beea44)
hh(d,a,b,c,m4,11,0x4bdecfa9)
hh(c,d,a,b,m7,16,0xf6bb4b60)
hh(b,c,d,a,m10,23,0xbebfbc70)
hh(a,b,c,d,m13,4,0x289b7ec6)
hh(d,a,b,c,m0,11,0xeaa127fa)
hh(c,d,a,b,m3,16,0xd4ef3085)
hh(b,c,d,a,m6,23,0x04881d05)
hh(a,b,c,d,m9,4,0xd9d4d039)
hh(d,a,b,c,m12,11,0xe6db99e5)
hh(c,d,a,b,m15,16,0x1fa27cf8)
hh(b,c,d,a,m2,23,0xc4ac5665)

第四輪

ii(a,b,c,d,m0,6,0xf4292244)
ii(d,a,b,c,m7,10,0x432aff97)
ii(c,d,a,b,m14,15,0xab9423a7)
ii(b,c,d,a,m5,21,0xfc93a039)
ii(a,b,c,d,m12,6,0x655b59c3)
ii(d,a,b,c,m3,10,0x8f0ccc92)
ii(c,d,a,b,m10,15,0xffeff47d)
ii(b,c,d,a,m1,21,0x85845dd1)
ii(a,b,c,d,m8,6,0x6fa87e4f)
ii(d,a,b,c,m15,10,0xfe2ce6e0)
ii(c,d,a,b,m6,15,0xa3014314)
ii(b,c,d,a,m13,21,0x4e0811a1)
ii(a,b,c,d,m4,6,0xf7537e82)
ii(d,a,b,c,m11,10,0xbd3af235)
ii(c,d,a,b,m2,15,0x2ad7d2bb)
ii(b,c,d,a,m9,21,0xeb86d391)

常數ti可以如下選擇:

在第i步中,ti是4294967296*abs(sin(i))的整數部分,i的單位是弧度。(4294967296等於2的32次方)
所有這些完成之後,將a、b、c、d分別加上a、b、c、d。然後用下一分組數據繼續運行演算法,最後的輸出是a、b、c和d的級聯。

當你按照我上面所說的方法實現md5演算法以後,你可以用以下幾個信息對你做出來的程序作一個簡單的測試,看看程序有沒有錯誤。

md5 ("") =
md5 ("a") =
md5 ("abc") =
md5 ("message digest") =
md5 ("abcdefghijklmnopqrstuvwxyz") =
md5 ("") =

md5 ("
01234567890") =

如果你用上面的信息分別對你做的md5演算法實例做測試,最後得出的結論和標准答案完全一樣,那我就要在這里象你道一聲祝賀了。要知道,我的程序在第一次編譯成功的時候是沒有得出和上面相同的結果的。

md5的安全性

md5相對md4所作的改進:

1. 增加了第四輪;

2. 每一步均有唯一的加法常數;

3. 為減弱第二輪中函數g的對稱性從(x&y)|(x&z)|(y&z)變為(x&z)|(y&(~z));

4. 第一步加上了上一步的結果,這將引起更快的雪崩效應;

5. 改變了第二輪和第三輪中訪問消息子分組的次序,使其更不相似;

6. 近似優化了每一輪中的循環左移位移量以實現更快的雪崩效應。各輪的位移量互不相同。

[color=red]簡單的說:

MD5叫信息-摘要演算法,是一種密碼的演算法,它可以對任何文件產生一個唯一的MD5驗證碼,每個文件的MD5碼就如同每個人的指紋一樣,都是不同的,這樣,一旦這個文件在傳輸過程中,其內容被損壞或者被修改的話,那麼這個文件的MD5碼就會發生變化,通過對文件MD5的驗證,可以得知獲得的文件是否完整。
參考資料:http://www.i0735.com/2005/5-28/17493173409.htm

8. MD5加密演算法是什麼呢

C.報文摘要
MD5即Message-Digest Algorithm 5(信息-摘要演算法5),用於確保信息傳輸完整一致。是計算機廣泛使用的雜湊演算法之一(又譯摘要演算法、哈希演算法),主流編程語言普遍已有MD5實現。將數據(如漢字)運算為另一固定長度值,是雜湊演算法的基礎原理,MD5的前身有MD2、MD3和MD4。

9. md5加密密碼都能破解嗎

可以破解,有md5解密的網站,但一般都是用暴力破解。
MD5是什麼?
Message
Digest
Algorithm
MD5(中文名為消息摘要演算法第五版)為計算機安全領域廣泛使用的一種散列函數,用以提供消息的完整性保護。該演算法的文件號為RFC
1321(R.Rivest,MIT
Laboratory
for
Computer
Science
and
RSA
Data
Security
Inc.
April
1992)MD5最廣泛被用於各種軟體的密碼認證和鑰匙識別上。通俗的講就是人們講的序列號。
常常在某些軟體下載站點的某軟體信息中看到其MD5值,它的作用就在於可以在下載該軟體後,對下載回來的文件用專門的軟體(如Windows
MD5
Check等)做一次MD5校驗,以確保獲得的文件與該站點提供的文件為同一文件。利用MD5演算法來進行文件校驗的方案被大量應用到軟體下載站、論壇
資料庫、系統文件安全等方面。
普通MD5密文的破解
隨著那些在線MD5密文破解網站的興起,一些常用
的MD5密碼都能在1秒鍾之內破解。即使是一些較為復雜的,也能夠通過破解網站的後台破解系統進行掛機破解。因此,MD5加密已經不存在神秘感,破解亦易
如反掌。
破解簡單MD5碼
假設我們的密碼為admin,那麼經過MD5加密得到密文為:7a57a5a743894a0e(16位)、(32位)。用在線破解網站來破解下密碼原文,打開某MD5在線破解網站,
將16位或者32位密文填入到文本框中,點擊「解密」按鈕,不到一秒鍾密碼原文就出來了。

10. md5加密是什麼

md5的全稱是message-digest algorithm 5(信息-摘要演算法),在90年代初由mit laboratory for computer science和rsa data security inc的ronald l. rivest開發出來,經md2、md3和md4發展而來。它的作用是讓大容量信息在用數字簽名軟體簽署私人密匙前被"壓縮"成一種保密的格式(就是把一個任意長度的位元組串變換成一定長的大整數)。不管是md2、md4還是md5,它們都需要獲得一個隨機長度的信息並產生一個128位的信息摘要。雖然這些演算法的結構或多或少有些相似,但md2的設計與md4和md5完全不同,那是因為md2是為8位機器做過設計優化的,而md4和md5卻是面向32位的電腦。這三個演算法的描述和c語言源代碼在internet rfcs 1321中有詳細的描述(http://www.ietf.org/rfc/rfc1321.txt),這是一份最權威的文檔,由ronald l. rivest在1992年8月向ieft提交。

MD5將任意長度的「位元組串」變換成一個128bit的大整數,並且它是一個不可逆的字元串變換演算法,換句話說就是,即使你看到源程序和演算法描述,也無法將一個MD5的值變換回原始的字元串,從數學原理上說,是因為原始的字元串有無窮多個,這有點象不存在反函數的數學函數。
MD5的典型應用是對一段Message(位元組串)產生fingerprint(指紋),以防止被「篡改」。舉個例子,你將一段話寫在一個叫 readme.txt文件中,並對這個readme.txt產生一個MD5的值並記錄在案,然後你可以傳播這個文件給別人,別人如果修改了文件中的任何內容,你對這個文件重新計算MD5時就會發現(兩個MD5值不相同)。如果再有一個第三方的認證機構,用MD5還可以防止文件作者的「抵賴」,這就是所謂的數字簽名應用。
MD5還廣泛用於加密和解密技術上,在很多操作系統中,用戶的密碼是以MD5值(或類似的其它演算法)的方式保存的, 用戶Login的時候,系統是把用戶輸入的密碼計算成MD5值,然後再去和系統中保存的MD5值進行比較,而系統並不「知道」用戶的密碼是什麼