⑴ windows加密技術有哪些
信息安全的重要性我們就不需再繼續強調了,無論企業還是個人,都對加密軟體的穩定性和安全性提出了更高的要求。可迎面而來更讓很多人困惑的是當加密軟體遍布市場令人應接不暇時,我們該如何去選擇。下面讓我們先來看一下目前主流的加密技術都有哪些。
1、 透明加密
透明加密技術是近年來針對企業文件保密需求應運而生的一種文件加密技術。所謂透明,是指對使用者來說是未知的。當使用者在打開或編輯指定文件時,系統將自動對未加密的文件進行加密,對已加密的文件自動解密。文件在硬碟上是密文,在內存中是明文。一旦離開使用環境,由於應用程序無法得到自動解密的服務而無法打開,從而起來保護文件內容的效果。
2、 驅動透明加密
驅動加密技術基於windows的文件系統(過濾)驅動(IFS)技術,工作在windows的內核層。我們在安裝計算機硬體時,經常要安裝其驅動,如列印機、U盤驅動。文件系統驅動就是把文件作為一種設備來處理的一種虛擬驅動。當應用程序對某種後綴文件進行操作時,文件驅動會監控到程序的操作,改變其操作方式,從而達到透明加密的效果。
3、 磁碟加密技術
磁碟加密技術相對於文檔加密技術,是在磁碟扇區級採用的加密技術,一般來說,該技術與上層應用無關,只針對特點的磁碟區域進行數據加密或者解密。
選擇加密軟體首先要考慮哪種加密技術更適合自己。其考核的標準是在進行各種大量文件操作後,文件是否會出現異常而無法打開,企業可以使用各種常規和非常規的方法來仔細測試;此外透明加密產品是否支持在網路文件系統下各種應用程序的正常工作也可以作為一個考核的要點。目前受關注度比較高的是透明加密技術,主要針對文檔信息安全,這也是因為辦公自動化的普及,企業內部的信息往來及重要機密都是以文檔的方式來存儲,因此透明加密方式更適合這種以文件安全防護為主的用戶,加密方式也更安全可靠。
我們知道office文檔可以通過設置密碼來進行加密,因此有些認為這樣便能很好地保護信息安全,但是他們沒有意識到現在黑客技術也在不斷的成熟,而且密碼加密有有機可乘的漏洞,並不能讓企業機密高枕無憂。因此安全度更高的透明加密更符合人們的需要,脫離使用環境時文件得不到解密服務而以密文的形式呈現,即使盜竊者拿到文件資料也是沒有辦法破解的,也就沒有任何利用價值。
加密技術是信息安全的核心技術,已經滲透到大部分安全產品之中。鵬宇成的免費加密軟體核心文件保護工具採用的是透明加密技術,通過伺服器端驗證來對文件進行正常的加密解密過程,並且集成外發文件控制系統保證對外發文件隨時可控,
⑵ 網路現代加密技術分幾種
1 數據加密原理
1.1數據加密
在計算機上實現的數據加密,其加密或解密變換是由密鑰控制實現的。密鑰(Keyword)是用戶按照一種密碼體制隨機選取,它通常是一隨機字元串,是控制明文和密文變換的唯一參數。
例:明文為字元串:
AS KINGFISHERS CATCH FIRE
(為簡便起見,假定所處理的數據字元僅為大寫字母和空格符)。
假定密鑰為字元串: ELIOT
加密演算法為:
(1)將明文劃分成多個密鑰字元串長度大小的塊(空格符以″+″表示)
AS+KI NGFIS HERS+ CATCH +FIRE
(2)用00~26范圍的整數取代明文的每個字元,空格符=00,A=01,...,Z=26:
0119001109 1407060919 0805181900 0301200308 0006091805
(3) 與步驟2一樣對密鑰的每個字元進行取代:
0512091520
(4) 對明文的每個塊,將其每個字元用對應的整數編碼與密鑰中相應位置的字元的整數編碼的和模27後的值取代:
(5) 將步驟4的結果中的整數編碼再用其等價字元替換:
FDIZB SSOXL MQ+GT HMBRA ERRFY
理想的情況是採用的加密模式使得攻擊者為了破解所付出的代價應遠遠超過其所獲得的利益。實際上,該目的適用於所有的安全性措施。這種加密模式的可接受的最終目標是:即使是該模式的發明者也無法通過相匹配的明文和密文獲得密鑰,從而也無法破解密文。
1.2數字簽名
密碼技術除了提供信息的加密解密外,還提供對信息來源的鑒別、保證信息的完整和不可否認等功能,而這三種功能都是通過數字簽名實現。
數字簽名是涉及簽名信息和簽名人私匙的計算結果。首先,簽名人的軟體對發送信息進行散列函數運算後,生成信息摘要(message digest)--這段信息所特有的長度固定的信息表示,然後,軟體使用簽名人的私匙對摘要進行解密,將結果連同信息和簽名人的數字證書一同傳送給預定的接收者。而接收者的軟體會對收到的信息生成信息摘要(使用同樣的散列函數),並使用簽名人的公匙對簽名人生成的摘要進行解密。接收者的軟體也可以加以配置,驗證簽名人證書的真偽,確保證書是由可信賴的CA頒發,而且沒有被CA吊銷。如兩個摘要一樣,就表明接收者成功核實了數字簽名。
2 加密體制及比較
根據密鑰類型不同將現代密碼技術分為兩類:一類是對稱加密(秘密鑰匙加密)系統,另一類是公開密鑰加密(非對稱加密)系統。
2.1對稱密碼加密系統
對稱鑰匙加密系統是加密和解密均採用同一把秘密鑰匙,而且通信雙方都必須獲得這把鑰匙,保持鑰匙的秘密。
對稱密碼系統的安全性依賴於以下兩個因素。第一,加密演算法必須是足夠強的,僅僅基於密文本身去解密信息在實踐上是不可能的;第二,加密方法的安全性依賴於密鑰的秘密性,而不是演算法的秘密性。因為演算法不需要保密,所以製造商可以開發出低成本的晶元以實現數據加密。這些晶元有著廣泛的應用,適合於大規模生產。
對稱加密系統最大的問題是密鑰的分發和管理非常復雜、代價高昂。比如對於具有n個用戶的網路,需要n(n-1)/2個密鑰,在用戶群不是很大的情況下,對稱加密系統是有效的。但是對於大型網路,當用戶群很大,分布很廣時,密鑰的分配和保存就成了大問題。對稱加密演算法另一個缺點是不能實現數字簽名。
對稱加密系統最著名的是美國數據加密標准DES、AES(高級加密標准)和歐洲數據加密標准IDEA。1977年美國國家標准局正式公布實施了美國的數據加密標准DES,公開它的加密演算法,並批准用於非機密單位和商業上的保密通信。DES成為全世界使用最廣泛的加密標准。
但是,經過20多年的使用,已經發現DES很多不足之處,對DES的破解方法也日趨有效。AES將會替代DES成為新一代加密標准。DES具有這樣的特性,其解密演算法與加密演算法相同,除了密鑰Key的施加順序相反以外。
2.2 公鑰密碼加密系統
公開密鑰加密系統採用的加密鑰匙(公鑰)和解密鑰匙(私鑰)是不同的。由於加密鑰匙是公開的,密鑰的分配和管理就很簡單,比如對於具有n個用戶的網路,僅需要2n個密鑰。公開密鑰加密系統還能夠很容易地實現數字簽名。因此,最適合於電子商務應用需要。在實際應用中,公開密鑰加密系統並沒有完全取代對稱密鑰加密系統,這是因為公開密鑰加密系統是基於尖端的數學難題,計算非常復雜,它的安全性更高,但它實現速度卻遠趕不上對稱密鑰加密系統。在實際應用中可利用二者的各自優點,採用對稱加密系統加密文件,採用公開密鑰加密系統加密″加密文件″的密鑰(會話密鑰),這就是混合加密系統,它較好地解決了運算速度問題和密鑰分配管理問題。
根據所基於的數學難題來分類,有以下三類系統目前被認為是安全和有效的:大整數因子分解系統(代表性的有RSA)、橢圓曲線離散對數系統(ECC)和離散對數系統(代表性的有DSA)。
當前最著名、應用最廣泛的公鑰系統RSA是由Rivet、Shamir、Adelman提出的(簡稱為RSA系統),它加密演算法使用了兩個非常大的素數來產生公鑰和私鑰。現實中加密演算法都基於RSA加密演算法。pgp演算法(以及大多數基於RSA演算法的加密方法)使用公鑰來加密一個對稱加密演算法的密鑰,然後再利用一個快速的對稱加密演算法來加密數據。這個對稱演算法的密鑰是隨機產生的,是保密的,因此,得到這個密鑰的唯一方法就是使用私鑰來解密。
RSA方法的優點主要在於原理簡單,易於使用。隨著分解大整數方法的進步及完善、計算機速度的提高以及計算機網路的發展(可以使用成千上萬台機器同時進行大整數分解),作為RSA加解密安全保障的大整數要求越來越大。為了保證RSA使用的安全性,其密鑰的位數一直在增加,比如,目前一般認為RSA需要1024位以上的字長才有安全保障。但是,密鑰長度的增加導致了其加解密的速度大為降低,硬體實現也變得越來越難以忍受,這對使用RSA的應用帶來了很重的負擔,對進行大量安全交易的電子商務更是如此,從而使得其應用范圍越來越受到制約。
DSA(DataSignatureAlgorithm)是基於離散對數問題的數字簽名標准,它僅提供數字簽名,不提供數據加密功能。它也是一個″非確定性的″數字簽名演算法,對於一個報文M,它的簽名依賴於隨機數r ?熏 這樣,相同的報文就可能會具有不同的簽名。另外,在使用相同的模數時,DSA比RSA更慢(兩者產生簽名的速度相同,但驗證簽名時DSA比RSA慢10到40倍)。
2.3 橢圓曲線加密演算法ECC技術優勢
安全性更高、演算法實現性能更好的公鑰系統橢圓曲線加密演算法ECC(EllipticCurveCryptography)基於離散對數的計算困難性。
⑶ 在網路安全中,數字簽名技術和密碼技術的區別是什麼
數字簽名技術是用來鑒別數據來源的一種技術。
數字簽名是非對稱密鑰加密技術與數字摘要技術的應用。
簡單點說就是數字簽名技術是以密碼技術為基礎的。是密碼技術的一種應用。
⑷ AES加密技術
關鍵字
藍牙
流加密
分組加密
des
aes
1
引言隨著機技術的迅速,網路中的信息安全問題越來...
vba、word和資料庫的聯合編程日期:2008-04-05
01:37:06
點擊:15
好評:0
摘要
本文介紹了用vba作為開發語言,用access或foxpro作為數據...
wsdxs.cn/html/pc-theory
⑸ 目前的數字認證和加密演算法的主要技術及其應用
1. 什麼是數字證書?
數字證書就是網路通訊中標志通訊各方身份信息的一系列數據,其作用類似於現實生活中的身份證。它是由一個權威機構發行的,人們可以在交往中用它來識別對方的身份。
最簡單的證書包含一個公開密鑰、名稱以及證書授權中心的數字簽名。一般情況下證書中還包括密鑰的有效時間,發證機關(證書授權中心)的名稱,該證書的序列號等信息,證書的格式遵循ITUT X.509國際標准。
一個標準的X.509數字證書包含以下一些內容:
證書的版本信息;
證書的序列號,每個證書都有一個唯一的證書序列號;
證書所使用的簽名演算法;
證書的發行機構名稱,命名規則一般採用X.500格式;
證書的有效期,現在通用的證書一般採用UTC時間格式,它的計時范圍為1950-2049;
證書所有人的名稱,命名規則一般採用X.500格式;
證書所有人的公開密鑰;
證書發行者對證書的簽名。
使用數字證書,通過運用對稱和非對稱密碼體制等密碼技術建立起一套嚴密的身份認證系統,從而保證:信息除發送方和接收方外不被其它人竊取;信息在傳輸過程中不被篡改;發送方能夠通過數字證書來確認接收方的身份;發送方對於自己的信息不能抵賴。
2. 為什麼要使用數字證書?
由於Internet網電子商務系統技術使在網上購物的顧客能夠極其方便輕松地獲得商家和企業的信息,但同時也增加了對某些敏感或有價值的數據被濫用的風險。買方和賣方都必須保證在網際網路上進行的一切金融交易運作都是真實可靠的,並且要使顧客、商家和企業等交易各方都具有絕對的信心,因而網際網路電子商務系統必須保證具有十分可靠的安全保密技術,也就是說,必須保證網路安全的四大要素,即信息傳輸的保密性、數據交換的完整性、發送信息的不可否認性、交易者身份的確定性。
信息的保密性
交易中的商務信息均有保密的要求,如信用卡的帳號和用戶名被人知悉,就可能被盜用,訂貨和付款的信息被競爭對手獲悉,就可能喪失商機。因此在電子商務的信息傳播中一般均有加密的要求。
交易者身份的確定性
網上交易的雙方很可能素昧平生,相隔千里。要使交易成功首先要能確認對方的身份,商家要考慮客戶端是不是騙子,而客戶也會擔心網上的商店不是一個玩弄欺詐的黑店。因此能方便而可靠地確認對方身份是交易的前提。對於為顧客或用戶開展服務的銀行、信用卡公司和銷售商店,為了做到安全、保密、可靠地開展服務活動,都要進行身份認證的工作。對有關的銷售商店來說,他們對顧客所用的信用卡的號碼是不知道的,商店只能把信用卡的確認工作完全交給銀行來完成。銀行和信用卡公司可以採用各種保密與識別方法,確認顧客的身份是否合法,同時還要防止發生拒付款問題以及確認訂貨和訂貨收據信息等。
不可否認性
由於商情的千變萬化,交易一旦達成是不能被否認的。否則必然會損害一方的利益。例如訂購黃金,訂貨時金價較低,但收到訂單後,金價上漲了,如收單方能否認受到訂單的實際時間,甚至否認收到訂單的事實,則訂貨方就會蒙受損失。因此電子交易通信過程的各個環節都必須是不可否認的。
不可修改性
由於商情的千變萬化,交易一旦達成應該是不能被否認的。否則必然會損害一方的利益。例如訂購黃金,訂貨時金價較低,但收到訂單後,金價上漲了,如收單方能否認收到訂單的實際時間,甚至否認收到訂單的事實,則訂貨方就會蒙受損失。因此電子交易通信過程的各個環節都必須是不可否認的。
數字安全證書提供了一種在網上驗證身份的方式。安全證書體制主要採用了公開密鑰體制,其它還包括對稱密鑰加密、數字簽名、數字信封等技術。
我們可以使用數字證書,通過運用對稱和非對稱密碼體制等密碼技術建立起一套嚴密的身份認證系統,從而保證:信息除發送方和接收方外不被其它人竊取;信息在傳輸過程中不被篡改;發送方能夠通過數字證書來確認接收方的身份;發送方對於自己的信息不能抵賴。
3. 數字認證原理
數字證書採用公鑰體制,即利用一對互相匹配的密鑰進行加密、解密。每個用戶自己設定一把特定的僅為本人所知的私有密鑰(私鑰),用它進行解密和簽名;同時設定一把公共密鑰(公鑰)並由本人公開,為一組用戶所共享,用於加密和驗證簽名。當發送一份保密文件時,發送方使用接收方的公鑰對數據加密,而接收方則使用自己的私鑰解密,這樣信息就可以安全無誤地到達目的地了。通過數字的手段保證加密過程是一個不可逆過程,即只有用私有密鑰才能解密。
在公開密鑰密碼體制中,常用的一種是RSA體制。其數學原理是將一個大數分解成兩個質數的乘積,加密和解密用的是兩個不同的密鑰。即使已知明文、密文和加密密鑰(公開密鑰),想要推導出解密密鑰(私有密鑰),在計算上是不可能的。按現在的計算機技術水平,要破解目前採用的1024位RSA密鑰,需要上千年的計算時間。公開密鑰技術解決了密鑰發布的管理問題,商戶可以公開其公開密鑰,而保留其私有密鑰。購物者可以用人人皆知的公開密鑰對發送的信息進行加密,安全地傳送以商戶,然後由商戶用自己的私有密鑰進行解密。
如果用戶需要發送加密數據,發送方需要使用接收方的數字證書(公開密鑰)對數據進行加密,而接收方則使用自己的私有密鑰進行解密,從而保證數據的安全保密性。
另外,用戶可以通過數字簽名實現數據的完整性和有效性,只需採用私有密鑰對數據進行加密處理,由於私有密鑰僅為用戶個人擁有,從而能夠簽名文件的唯一性,即保證:數據由簽名者自己簽名發送,簽名者不能否認或難以否認;數據自簽發到接收這段過程中未曾作過任何修改,簽發的文件是真實的。
4. 數字證書是如何頒發的?
數字證書是由認證中心頒發的。根證書是認證中心與用戶建立信任關系的基礎。在用戶使用數字證書之前必須首先下載和安裝。
認證中心是一家能向用戶簽發數字證書以確認用戶身份的管理機構。為了防止數字憑證的偽造,認證中心的公共密鑰必須是可靠的,認證中心必須公布其公共密鑰或由更高級別的認證中心提供一個電子憑證來證明其公共密鑰的有效性,後一種方法導致了多級別認證中心的出現。
數字證書頒發過程如下:用戶產生了自己的密鑰對,並將公共密鑰及部分個人身份信息傳送給一家認證中心。認證中心在核實身份後,將執行一些必要的步驟,以確信請求確實由用戶發送而來,然後,認證中心將發給用戶一個數字證書,該證書內附了用戶和他的密鑰等信息,同時還附有對認證中心公共密鑰加以確認的數字證書。當用戶想證明其公開密鑰的合法性時,就可以提供這一數字證書。
5. 加密技術
由於數據在傳輸過程中有可能遭到侵犯者的竊聽而失去保密信息,加密技術是電子商務採取的主要保密安全措施,是最常用的保密安全手段。加密技術也就是利用技術手段把重要的數據變為亂碼(加密)傳送,到達目的地後再用相同或不同的手段還原(解密)。
加密包括兩個元素:演算法和密鑰。一個加密演算法是將普通的文本(或者可以理解的信息)與一竄數字(密鑰)的結合,產生不可理解的密文的步驟。密鑰和演算法對加密同等重要。
密鑰是用來對數據進行編碼和解碼的一種演算法。在安全保密中,可通過適當的密鑰加密技術和管理機制,來保證網路的信息通訊安全。密鑰加密技術的密碼體制分為對稱密鑰體制和非對稱密鑰體制兩種。
相應地,對數據加密的技術分為兩類,即對稱加密(私人密鑰加密)和非對稱加密(公開密鑰加密)。對稱加密以數據加密標准(DES,Data Encryption Standard)演算法為典型代表,非對稱加密通常以RSA(Rivest Shamir Ad1eman)演算法為代表。對稱加密的加密密鑰和解密密鑰相同,而非對稱加密的加密密鑰和解密密鑰不同,加密密鑰可以公開而解密密鑰需要保密。
⑹ 面對外部網路環境威脅數據應採用什麼加密技術
電子商務中的網路安全問題:防火牆技術:防火牆(Firewall)是近年來發展的最重要的安全技術,它的主要功能是加強網路之間的訪問控制,防止外部網路進入內部網路;加密技術:數據加密被認為是最可靠的安全保障形式,它可以從根本上滿足信息完整性的要求,是一種主動安全防範策略。數據加密就是按照確定的密碼演算法將敏感的明文數據變換成難以識別的密文數據;數字簽名技術:數字簽名(DigitalSignature)技術是將摘要用發送者的私鑰加密,與原文一起傳送給接收者。接收者只有用發送者的公鑰才能解密被加密的摘要。在電子商務安全保密系統中,數字簽名技術有著特別重要的地位,在電子商務安全服務中的源鑒別、完整性服務、不可否認服務中都要用到數字簽名技術;數字時間戳技術:在電子商務交易的文件中,時間是十分重要的信息,是證明文件有效性的主要內容。
⑺ 數據加密的基本信息
和防火牆配合使用的數據加密技術,是為提高信息系統和數據的安全性和保密性,防止秘密數據被外部破譯而採用的主要技術手段之一。在技術上分別從軟體和硬體兩方面採取措施。按照作用的不同,數據加密技術可分為數據傳輸加密技術、數據存儲加密技術、數據完整性的鑒別技術和密鑰管理技術。
數據傳輸加密技術的目的是對傳輸中的數據流加密,通常有線路加密與端—端加密兩種。線路加密側重在線路上而不考慮信源與信宿,是對保密信息通過各線路採用不同的加密密鑰提供安全保護。端—端加密指信息由發送端自動加密,並且由TCP/IP進行數據包封裝,然後作為不可閱讀和不可識別的數據穿過互聯網,當這些信息到達目的地,將被自動重組、解密,而成為可讀的數據。
數據存儲加密技術的目的是防止在存儲環節上的數據失密,數據存儲加密技術可分為密文存儲和存取控制兩種。前者一般是通過加密演算法轉換、附加密碼、加密模塊等方法實現;後者則是對用戶資格、許可權加以審查和限制,防止非法用戶存取數據或合法用戶越權存取數據。
數據完整性鑒別技術的目的是對介入信息傳送、存取和處理的人的身份和相關數據內容進行驗證,一般包括口令、密鑰、身份、數據等項的鑒別。系統通過對比驗證對象輸入的特徵值是否符合預先設定的參數,實現對數據的安全保護。
密鑰管理技術包括密鑰的產生、分配、保存、更換和銷毀等各個環節上的保密措施。 數據加密的術語有 :
明文,即原始的或未加密的數據。通過加密演算法對其進行加密,加密演算法的輸入信息為明文和密鑰;
密文,明文加密後的格式,是加密演算法的輸出信息。加密演算法是公開的,而密鑰則是不公開的。密文不應為無密鑰的用戶理解,用於數據的存儲以及傳輸;
密鑰,是由數字、字母或特殊符號組成的字元串,用它控制數據加密、解密的過程;
加密,把明文轉換為密文的過程;
加密演算法,加密所採用的變換方法;
解密,對密文實施與加密相逆的變換,從而獲得明文的過程;
解密演算法,解密所採用的變換方法。
加密技術是一種防止信息泄露的技術。它的核心技術是密碼學,密碼學是研究密碼系統或通信安全的一門學科,它又分為密碼編碼學和密碼分析學。
任何一個加密系統都是由明文、密文、演算法和密鑰組成。發送方通過加密設備或加密演算法,用加密密鑰將數據加密後發送出去。接收方在收到密文後,用解密密鑰將密文解密,恢復為明文。在傳輸過程中,即使密文被非法分子偷竊獲取,得到的也只是無法識別的密文,從而起到數據保密的作用。
例:明文為字元串:
AS KINGFISHERS CATCH FIRE
(為簡便起見,假定所處理的數據字元僅為大寫字母和空格符)。假定密鑰為字元串:
ELIOT
加密演算法為:
1) 將明文劃分成多個密鑰字元串長度大小的塊(空格符以+表示)
AS+KI NGFIS HERS+ CATCH +FIRE
2) 用0~26范圍的整數取代明文的每個字元,空格符=00,A=01,...,Z=26:
3) 與步驟2一樣對密鑰的每個字元進行取代:
0512091520
4) 對明文的每個塊,將其每個字元用對應的整數編碼與密鑰中相應位置的字元的整數編碼的和模27後的值(整數編碼)取代:
舉例:第一個整數編碼為 (01+05)%27=06
5) 將步驟4的結果中的整數編碼再用其等價字元替換:
FDIZB SSOXL MQ+GT HMBRA ERRFY
如果給出密鑰,該例的解密過程很簡單。問題是對於一個惡意攻擊者來說,在不知道密鑰的情況下,利用相匹配的明文和密文獲得密鑰究竟有多困難?對於上面的簡單例子,答案是相當容易的,不是一般的容易,但是,復雜的加密模式同樣很容易設計出。理想的情況是採用的加密模式使得攻擊者為了破解所付出的代價應遠遠超過其所獲得的利益。實際上,該目的適用於所有的安全性措施。這種加密模式的可接受的最終目標是:即使是該模式的發明者也無法通過相匹配的明文和密文獲得密鑰,從而也無法破解密文。 傳統加密方法有兩種,替換和置換。上面的例子採用的就是替換的方法:使用密鑰將明文中的每一個字元轉換為密文中的一個字元。而置換僅將明文的字元按不同的順序重新排列。單獨使用這兩種方法的任意一種都是不夠安全的,但是將這兩種方法結合起來就能提供相當高的安全程度。數據加密標准(Data Encryption Standard,簡稱DES)就採用了這種結合演算法,它由IBM制定,並在1977年成為美國官方加密標准。
DES的工作原理為:將明文分割成許多64位大小的塊,每個塊用64位密鑰進行加密,實際上,密鑰由56位數據位和8位奇偶校驗位組成,因此只有56個可能的密碼而不是64個。每塊先用初始置換方法進行加密,再連續進行16次復雜的替換,最後再對其施用初始置換的逆。第i步的替換並不是直接利用原始的密鑰K,而是由K與i計算出的密鑰Ki。
DES具有這樣的特性,其解密演算法與加密演算法相同,除了密鑰Ki的施加順序相反以外。 多年來,許多人都認為DES並不是真的很安全。事實上,即使不採用智能的方法,隨著快速、高度並行的處理器的出現,強制破解DES也是可能的。公開密鑰加密方法使得DES以及類似的傳統加密技術過時了。公開密鑰加密方法中,加密演算法和加密密鑰都是公開的,任何人都可將明文轉換成密文。但是相應的解密密鑰是保密的(公開密鑰方法包括兩個密鑰,分別用於加密和解密),而且無法從加密密鑰推導出,因此,即使是加密者若未被授權也無法執行相應的解密。
公開密鑰加密思想最初是由Diffie和Hellman提出的,最著名的是Rivest、Shamir以及Adleman提出的,通常稱為RSA(以三個發明者的首位字母命名)的方法,該方法基於下面的兩個事實:
1) 已有確定一個數是不是質數的快速演算法;
2) 尚未找到確定一個合數的質因子的快速演算法。
RSA方法的工作原理如下:
1) 任意選取兩個不同的大質數p和q,計算乘積r=p*q;
2) 任意選取一個大整數e,e與(p-1)*(q-1)互質,整數e用做加密密鑰。注意:e的選取是很容易的,例如,所有大於p和q的質數都可用。
3) 確定解密密鑰d:
(d * e) molo(p - 1)*(q - 1) = 1
根據e、p和q可以容易地計算出d。
4) 公開整數r和e,但是不公開d;
5) 將明文P (假設P是一個小於r的整數)加密為密文C,計算方法為:
C = P^e molo r
6) 將密文C解密為明文P,計算方法為:
P = C^d molo r
然而只根據r和e(不是p和q)要計算出d是不可能的。因此,任何人都可對明文進行加密,但只有授權用戶(知道d)才可對密文解密。
下面舉一簡單的例子對上述過程進行說明,顯然我們只能選取很小的數字。
例:選取p=3, q=5,則r=15,(p-1)*(q-1)=8。選取e=11(大於p和q的質數),通過(d*11)molo(8) = 1。
計算出d =3。
假定明文為整數13。則密文C為
C = P^e molo r
= 13^11 molo 15
= 1,792,160,394,037 molo 15
= 7
復原明文P為:
P = C^d molo r
= 7^3 molo 15
= 343 molo 15
= 13
因為e和d互逆,公開密鑰加密方法也允許採用這樣的方式對加密信息進行簽名,以便接收方能確定簽名不是偽造的。假設A和B希望通過公開密鑰加密方法進行數據傳輸,A和B分別公開加密演算法和相應的密鑰,但不公開解密演算法和相應的密鑰。A和B的加密演算法分別是ECA和ECB,解密演算法分別是DCA和DCB,ECA和DCA互逆,ECB和DCB互逆。若A要向B發送明文P,不是簡單地發送ECB(P),而是先對P施以其解密演算法DCA,再用加密演算法ECB對結果加密後發送出去。
密文C為:
C = ECB(DCA(P))
B收到C後,先後施以其解密演算法DCB和加密演算法ECA,得到明文P:
ECA(DCB(C))
= ECA(DCB(ECB(DCA(P))))
= ECA(DCA(P)) /*DCB和ECB相互抵消*/
= P /*DCB和ECB相互抵消*/
這樣B就確定報文確實是從A發出的,因為只有當加密過程利用了DCA演算法,用ECA才能獲得P,只有A才知道DCA演算法,沒
有人,即使是B也不能偽造A的簽名。 前言
隨著信息化的高速發展,人們對信息安全的需求接踵而至,人才競爭、市場競爭、金融危機、敵特機構等都給企事業單位的發展帶來巨大風險,內部竊密、黑客攻擊、無意識泄密等竊密手段成為了人與人之間、企業與企業之間、國與國之間的安全隱患。
市場的需求、人的安全意識、環境的諸多因素促使著我國的信息安全高速發展,信息安全經歷了從傳統的單一防護如防火牆到信息安全整體解決方案、從傳統的老三樣防火牆、入侵檢測、殺毒軟體到多元化的信息安全防護、從傳統的外部網路防護到內網安全、主機安全等。
傳統數據加密技術分析
信息安全傳統的老三樣(防火牆、入侵檢測、防病毒)成為了企事業單位網路建設的基礎架構,已經遠遠不能滿足用戶的安全需求,新型的安全防護手段逐步成為了信息安全發展的主力軍。例如主機監控、文檔加密等技術。
在新型安全產品的隊列中,主機監控主要採用外圍圍追堵截的技術方案,雖然對信息安全有一定的提高,但是因為產品自身依賴於操作系統,對數據自身沒有有效的安全防護,所以存在著諸多安全漏洞,例如:最基礎的手段拆拔硬碟、winpe光碟引導、USB引導等方式即可將數據盜走,而且不留任何痕跡;此技術更多的可以理解為企業資產管理軟體,單一的產品無法滿足用戶對信息安全的要求。
文檔加密是現今信息安全防護的主力軍,採用透明加解密技術,對數據進行強制加密,不改變用戶原有的使用習慣;此技術對數據自身加密,不管是脫離操作系統,還是非法脫離安全環境,用戶數據自身都是安全的,對環境的依賴性比較小。市面上的文檔加密主要的技術分為磁碟加密、應用層加密、驅動級加密等幾種技術,應用層加密因為對應用程序的依賴性比較強,存在諸多兼容性和二次開發的問題,逐步被各信息安全廠商所淘汰。
當今主流的兩大數據加密技術
我們所能常見到的主要就是磁碟加密和驅動級解密技術:
全盤加密技術是主要是對磁碟進行全盤加密,並且採用主機監控、防水牆等其他防護手段進行整體防護,磁碟加密主要為用戶提供一個安全的運行環境,數據自身未進行加密,操作系統一旦啟動完畢,數據自身在硬碟上以明文形式存在,主要靠防水牆的圍追堵截等方式進行保護。磁碟加密技術的主要弊端是對磁碟進行加密的時間周期較長,造成項目的實施周期也較長,用戶一般無法忍耐;磁碟加密技術是對磁碟進行全盤加密,一旦操作系統出現問題。需要對數據進行恢復也是一件讓用戶比較頭痛的事情,正常一塊500G的硬碟解密一次所需時間需要3-4個小時;市面上的主要做法是對系統盤不做加密防護,而是採用外圍技術進行安全訪問控制,大家知道操作系統的版本不斷升級,微軟自身的安全機制越來越高,人們對系統的控制力度越來越低,尤其黑客技術層層攀高,一旦防護體系被打破,所有一切將暴露無疑。另外,磁碟加密技術是對全盤的信息進行安全管控,其中包括系統文件,對系統的效率性能將大大影響。
驅動級技術是信息加密的主流技術,採用進程+後綴的方式進行安全防護,用戶可以根據企事業單位的實際情況靈活配置,對重要的數據進行強制加密,大大提高了系統的運行效率。驅動級加密技術與磁碟加密技術的最大區別就是驅動級技術會對用戶的數據自身進行保護,驅動級加密採用透明加解密技術,用戶感覺不到系統的存在,不改變用戶的原有操作,數據一旦脫離安全環境,用戶將無法使用,有效提高了數據的安全性;另外驅動級加密技術比磁碟加密技術管理可以更加細粒度,有效實現數據的全生命周期管理,可以控制文件的使用時間、次數、復制、截屏、錄像等操作,並且可以對文件的內部進行細粒度的授權管理和數據的外出訪問控制,做到數據的全方位管理。驅動級加密技術在給用戶的數據帶來安全的同時,也給用戶的使用便利性帶來一定的問題,驅動級加密採用進程加密技術,對同類文件進行全部加密,無法有效區別個人文件與企業文件數據的分類管理,個人電腦與企業辦公的並行運行等問題。
⑻ 8、簡述密碼技術的分類,及 其在身份識別中是如何 被使用的,有哪些優缺點。
密碼體制分為私用密鑰加密技術(對稱加密)和公開密鑰加密技術(非對稱加密)。
1、對稱密碼體制
對稱密碼體制是一種傳統密碼體制,也稱為私鑰密碼體制。在對稱加密系統中,加密和解密採用相同的密鑰。因為加解密密鑰相同,需要通信的雙方必須選擇和保存他們共同的密鑰,各方必須信任對方不會將密鑰泄密出去,這樣就可以實現數據的機密性和完整性。對於具有n個用戶的網路,需要n(n-1)/2個密鑰,在用戶群不是很大的情況下,對稱加密系統是有效的。但是對於大型網路,當用戶群很大,分布很廣時,密鑰的分配和保存就成了問題
2、非對稱密碼體制
非對稱密碼體制也叫公鑰加密技術,該技術就是針對私鑰密碼體制的缺陷被提出來的。在公鑰加密系統中,加密和解密是相對獨立的,加密和解密會使用兩把不同的密鑰,加密密鑰(公開密鑰)向公眾公開,誰都可以使用,解密密鑰(秘密密鑰)只有解密人自己知道,非法使用者根據公開的加密密鑰無法推算出解密密鑰,顧其可稱為公鑰密碼體制。
⑼ 什麼是數據加密
數據加密,最常見的就是對文件文檔進行加密處理,如最常見的如AES256,512,SM2、SM3等高強度加密演算法,或現在最常用的透明加密技術,一般分為驅動層及應用層透明加密,通過這些加密技術的結合,並開發出的透明加密軟體,如紅線防泄密系統,就完成了數據加密!
⑽ 你了解哪些數據加密技術 結合相關資料進行簡單介紹
加密技術是電子商務採取的主要安全保密措施,是最常用的安全保密手段,利用技術手段把重要的數據變為亂碼(加密)傳送,到達目的地後再用相同或不同的手段還原(解密)。常見加密技術分類有:對稱加密、非對稱加密、專用密鑰、公開密鑰。
1.對稱加密。
對稱加密採用了對稱密碼編碼技術,它的特點是文件加密和解密使用相同的密鑰,即加密密鑰也可以用作解密密鑰,這種方法在密碼學中叫做對稱加密演算法,對稱加密演算法使用起來簡單快捷,密鑰較短,且破譯困難。
除了數據加密標准(DES),另一個對稱密鑰加密系統是國際數據加密演算法(IDEA),它比DES的加密性好,而且對計算機功能要求也沒有那麼高。IDEA加密標准由PGP(Pretty Good Privacy)系統使用。
2.加密技術非對稱。
1976年,美國學者Dime和Henman為解決信息公開傳送和密鑰管理問題,提出一種新的密鑰交換協議,允許在不安全的媒體上的通訊雙方交換信息,安全地達成一致的密鑰,這就是「公開密鑰系統」。相對於「對稱加密演算法」這種方法也叫做「非對稱加密演算法」。
與對稱加密演算法不同,非對稱加密演算法需要兩個密鑰:公開密鑰(publickey)和私有密鑰 (privatekey)。公開密鑰與私有密鑰是一對,如果用公開密鑰對數據進行加密,只有用對應的私有密鑰才能解密;如果用私有密鑰對數據進行加密,那麼只有用對應的公開密鑰才能解密。因為加密和解密使用的是兩個不同的密鑰,所以這種演算法叫作非對稱加密演算法。
(10)系統的鑒別數據用什麼密碼技術擴展閱讀:
常規密碼的優點是有很強的保密強度,且經受住時間的檢驗和攻擊,但其密鑰必須通過安全的途徑傳送。因此,其密鑰管理成為系統安全的重要因素。
在公鑰密碼中,收信方和發信方使用的密鑰互不相同,而且幾乎不可能從加密密鑰推導解密密鑰。比較著名的公鑰密碼演算法有:RSA、背包密碼、McEliece密碼、Diffe,Hellman、Rabin、Ong?Fiat?Shamir、零知識證明的演算法、橢圓曲線、EIGamal演算法等等。最有影響的公鑰密碼演算法是RSA,它能抵抗到目前為止已知的所有密碼攻擊。