Ⅰ 密碼學相關知識梳理
密碼學是研究編制密碼和破譯密碼的技術科學。
密碼學的歷史最早可以追溯到幾千年以前,古今中外都有密碼學運用的記載,從歷史看,戰爭很大程度給密碼學提供了應用環境,推動了密碼學的發展,密碼學按照發展歷程,大體可以分為三個階段,手工加密、機械加密和計算機加密階段,下面是近代密碼學的一些重要進展。
1949年,資訊理論始祖克勞德·艾爾伍德·香農(Claude Elwood Shannon)發表了《保密系統的通信理論》一文,把密碼學建立在嚴格的數學基礎之上,奠定理論基礎,從此成為真正的科學。
1976年,密碼學專家惠特菲爾德·迪菲(Bailey Whitfield Diffie)和馬丁·赫爾曼(Martin Edward Hellman)兩人發表了《密碼學的新方向》一文,解決了密鑰管理的難題,把密鑰分為加密的公鑰和解密的私鑰,提出了密鑰交換演算法Diffie-Hellman。
1977年,美國國家標准技術研究所制定數據加密標准(Data Encryption Standard ),將其頒布為國家標准。
1977年,麻省理工學院的羅納德·李維斯特(Ron Rivest)、阿迪·薩莫爾(Adi Shamir)和倫納德·阿德曼(Leonard Adleman)一起提出RSA加密演算法,RSA就是他們三人姓氏開頭字母拼在一起組成的。
1997年4月,美國ANSI發起徵集AES(advanced encryption standard)的活動,並為此成立了AES工作小組,經過幾年的時間篩選,最終採用了由比利時的Joan Daemen和Vincent Rijmen設計的Rijndael演算法,並在2002年5月26日成為有效的加密標准。
按密碼體制劃分:對稱密碼體制密碼學和非對稱密碼體制密碼學對應的有對稱密碼演算法和非對稱密碼演算法。
消息摘要演算法又稱散列演算法,其核心在於散列函數的單向性,即通過散列函數可獲得對應的散列值,但不可通過該散列值反推其原始信息,這是消息摘要演算法的安全性的根本所在,我們通常使用該演算法判斷數據的完整性。
消息摘要演算法我們常見比如MD(Message Digest)、SHA(Secure Hash Algorithm)、HMAC(Hash Message Authentication Code)等,常用於驗證數據的完整性,是數字簽名演算法的核心演算法。
我們以微信支付的介面調用分析一下摘要演算法怎麼應用的,首先可以打開微信支付如下相關文檔:
微信支付統一下單介面文檔
微信支付簽名過程
對稱加密簡單的說就是加密和解密使用同一個密鑰,解密演算法是加密演算法的逆運算。
對稱加密演算法主要有DES、DES演算法的變種DESede、DES替代者AES演算法、IDEA、PBE等
非對稱加密演算法稱為雙鑰或公鑰加密演算法,跟對稱加密演算法不同的是,對稱加密演算法只一個密鑰,非對稱加密演算法 一個公鑰和一個私鑰,一個用於加密,另外一個用於解密。
簡單的說:一對密鑰公鑰A和私鑰B,A加密只能B解密,B加密只能A解密。
非對稱加密演算法源於DH演算法(Diffie-Hellman,密鑰交換演算法)由W.Diffie和 M.Hellman共同提出,該演算法為非對稱加密演算法奠定了基礎,下面我們先來了解下密鑰交換演算法DH和ECDH演算法。
為什麼需要密鑰交換演算法?前面我們提到對稱加密演算法加解密都是用同一個密鑰,我們可以想一下,我們怎樣能安全的把一個密鑰給到對方呢?比如我們經常用到HTTPS,大家都說HTTPS加密了是安全的,那它加密的密鑰怎麼來的呢?很顯然我們在訪問一個https地址的時候,事先並沒有密鑰,訪問過程中客戶端跟服務端通過握手協議協商出來的密鑰,如果服務端直接把密鑰在網路上傳輸那肯定不安全的,所以這過程到底發生了什麼?後面專門分析https的時候會詳細寫,這里先了解下該演算法。
DH密鑰交換演算法的安全性基於有限域上的離散對數難題
ECDH密鑰交換演算法是基於橢圓曲線加密
從上面圖中可以看出,DH&ECDH密鑰交換演算法交互雙方都會向對方公開一部分信息,即所謂的公鑰,這部分即使被別人拿到了也不會威脅到最終的密鑰,這里很關鍵的一點是甲乙兩方公布的公鑰是不相同的,但是最終生成的密鑰兩邊是一致的,這里是利用的演算法原理,有興趣的可以去查閱詳細的演算法公式,因為最終的密鑰不需要傳輸給對方,所以很大程度保證安全性。
非對稱加密演算法:
比較典型的非對稱加密演算法有RSA、ECC、ElGamal,RSA演算法基於大數因子分解難題,而ElGamal和ECC演算法則是基於離散對數難題。
從上面消息傳遞模型我們可以看出,非對稱加密演算法遵循「私鑰加密,公鑰解密」和「公鑰加密,私鑰解密」的原則,但是有一點需要注意,公鑰是公開的,所以用在什麼場景是需要根據該演算法的特徵來考慮的,比如既然公鑰是公開的,你用私鑰加密敏感數據傳遞給第三方合適么?顯然不合適,因為公鑰公開的,別人都可以拿到公鑰,也就意味著你加密的數據都可以解密,所以適合的場景比如私鑰加密,公鑰只是用來驗證加密的內容,每個人都可以來驗證,該場景是不在乎加密內容被其它攻擊者看到的,甚至說內容本來就是公開的,對於接收者用公鑰確保內容沒有被篡改即可,所以我們通常說非對稱演算法「私鑰簽名,公鑰驗證簽名」,另外一點,「公鑰加密,私鑰解密」,因為私鑰只有我們自己手上有,所以理論上也只有我們自己可以解密,這樣是安全的,https證書驗證以及握手協議過程中會體現這一點。
數字簽名演算法可以看做是一種帶有密鑰的消息摘要演算法,並且這種密鑰包含了公鑰和私鑰。也就是說數字簽名演算法是非對稱加密演算法和消息摘要演算法的結合體,遵循「私鑰簽名,公鑰驗證」的簽名認證方式。
數字簽名演算法是公鑰基礎設施(Public Key Infrastructure,PKI)以及許多網路安全機制(SSL/TLS,VPN等)的基礎。
數字簽名演算法要求能夠驗證數據完整性、認證數據來源,並起到抗否認的作用。
數字簽名演算法主要包括RSA、DSA、ECDSA共3種演算法,其中RSA演算法源於整數因子分解問題,DSA和ECDSA演算法源於離散對數問題。
我們以螞蟻金服開放平台上介面簽名方案為例,詳細說明可以打開如下文檔:
螞蟻開放平台簽名專區
Ⅱ 密碼加密的方法有那些
用戶密碼加密方式
用戶密碼保存到資料庫時,常見的加密方式有哪些?以下幾種方式是常見的密碼保存方式:
1. 明文保存
比如用戶設置的密碼是「123456」,直接將「123456」保存在資料庫中,這種是最簡單的保存方式,也是最不安全的方式。但實際上不少互聯網公司,都可能採取的是這種方式。
2. 對稱加密演算法來保存
比如3DES、AES等演算法,使用這種方式加密是可以通過解密來還原出原始密碼的,當然前提條件是需要獲取到密鑰。不過既然大量的用戶信息已經泄露了,密鑰很可能也會泄露,當然可以將一般數據和密鑰分開存儲、分開管理,但要完全保護好密鑰也是一件非常復雜的事情,所以這種方式並不是很好的方式。
總結
採用PBKDF2、bcrypt、scrypt等演算法可以有效抵禦彩虹表攻擊,即使數據泄露,最關鍵的「用戶密碼」仍然可以得到有效的保護,黑客無法大批量破解用戶密碼,從而切斷撞庫掃號的根源。
【加密軟體編輯推薦】
易控網盾加密軟體--重要文件防泄密專家!輕松實現單位內部文件自動加密保護,加密後的文件在單位內部正常流轉使用。未經許可,任何私自拷貝加密文件外發出去,都將打開為亂碼,無法使用!對於發送給客戶等第三方的文件,可實現控制打開時間和打開次數等防泄密參數!同時可設置對員工電腦文件自動備份,防止惡意刪除造成核心數據的遺失!從源頭防止企業核心文件被外泄!
相關頁面:加密軟體,文件加密,文檔加密,圖紙加密軟體,防泄密軟體,CAD加密軟體,文件外發加密
Ⅲ 計算機密碼學中有哪些加密演算法
傳統密碼學Autokey密碼 置換密碼 二字母組代替密碼 (by Charles Wheatstone) 多字母替換密碼 希爾密碼 維吉尼亞密碼 替換密碼 凱撒密碼 ROT13 仿射密碼 Atbash密碼 換位密碼 Scytale Grille密碼 VIC密碼 (一種復雜的手工密碼,在五十年代早期被至少一名蘇聯間諜使用過,在當時是十分安全的) 分組密碼包括 DES、IDEA、SAFER、Blowfish 和 Skipjack — 最後一個是「美國國家安全局(US National Security Agency,NSA)」限制器晶元中使用的演算法。 置換加密法,將字母的順序重新排列;替換加密法,將一組字母換成其他字母或符號。 DES(Data Encryption Standard):數據加密標准,速度較快,適用於加密大量數據的場合 RSA:由 RSA 公司發明,是一個支持變長密鑰的公共密鑰演算法,需要加密的文件塊的長度也是可變的MD5。 對MD5演算法簡要的敘述可以為:MD5以512位分組來處理輸入的信息,且每一分組又被劃分為16個32位子分組,經過了一系列的處理後,演算法的輸出由四個32位分組組成,將這四個32位分組級聯後將生成一個128位散列值。
Ⅳ 常用的加密演算法有哪些
對稱密鑰加密
對稱密鑰加密 Symmetric Key Algorithm 又稱為對稱加密、私鑰加密、共享密鑰加密:這類演算法在加密和解密時使用相同的密鑰,或是使用兩個可以簡單的相互推算的密鑰,對稱加密的速度一般都很快。
分組密碼
DES、3DES
AES
ECC
數字簽名
分組密碼 Block Cipher 又稱為「分塊加密」或「塊加密」,將明文分成多個等長的模塊,使用確定的演算法和對稱密鑰對每組分別加密解密。這也就意味著分組密碼的一個優點在於可以實現同步加密,因為各分組間可以相對獨立。
與此相對應的是流密碼:利用密鑰由密鑰流發生器產生密鑰流,對明文串進行加密。與分組密碼的不同之處在於加密輸出的結果不僅與單獨明文相關,而是與一組明文相關。
數據加密標准 DES Data Encryption Standard 是由IBM在美國國家安全局NSA授權下研製的一種使用56位密鑰的分組密碼演算法,並於1977年被美國國家標准局NBS公布成為美國商用加密標准。但是因為DES固定的密鑰長度,漸漸不再符合在開放式網路中的安全要求,已經於1998年被移出商用加密標准,被更安全的AES標准替代。
DES使用的Feistel Network網路屬於對稱的密碼結構,對信息的加密和解密的過程極為相似或趨同,使得相應的編碼量和線路傳輸的要求也減半。
DES是塊加密演算法,將消息分成64位,即16個十六進制數為一組進行加密,加密後返回相同大小的密碼塊,這樣,從數學上來說,64位0或1組合,就有2^64種可能排列。DES密鑰的長度同樣為64位,但在加密演算法中,每逢第8位,相應位會被用於奇偶校驗而被演算法丟棄,所以DES的密鑰強度實為56位。
3DES Triple DES,使用不同Key重復三次DES加密,加密強度更高,當然速度也就相應的降低。
高級加密標准 AES Advanced Encryption Standard 為新一代數據加密標准,速度快,安全級別高。由美國國家標准技術研究所NIST選取Rijndael於2000年成為新一代的數據加密標准。
AES的區塊長度固定為128位,密鑰長度可以是128位、192位或256位。AES演算法基於Substitution Permutation Network代換置列網路,將明文塊和密鑰塊作為輸入,並通過交錯的若干輪代換"Substitution"和置換"Permutation"操作產生密文塊。
AES加密過程是在一個4*4的位元組矩陣(或稱為體State)上運作,初始值為一個明文區塊,其中一個元素大小就是明文區塊中的一個Byte,加密時,基本上各輪加密循環均包含這四個步驟:

ECC即 Elliptic Curve Cryptography 橢圓曲線密碼學,是基於橢圓曲線數學建立公開密鑰加密的演算法。ECC的主要優勢是在提供相當的安全等級情況下,密鑰長度更小。
ECC的原理是根據有限域上的橢圓曲線上的點群中的離散對數問題ECDLP,而ECDLP是比因式分解問題更難的問題,是指數級的難度。而ECDLP定義為:給定素數p和橢圓曲線E,對Q=kP,在已知P,Q 的情況下求出小於p的正整數k。可以證明由k和P計算Q比較容易,而由Q和P計算k則比較困難。
數字簽名 Digital Signature 又稱公鑰數字簽名是一種用來確保數字消息或文檔真實性的數學方案。一個有效的數字簽名需要給接收者充足的理由來信任消息的可靠來源,而發送者也無法否認這個簽名,並且這個消息在傳輸過程中確保沒有發生變動。
數字簽名的原理在於利用公鑰加密技術,簽名者將消息用私鑰加密,然後公布公鑰,驗證者就使用這個公鑰將加密信息解密並對比消息。一般而言,會使用消息的散列值來作為簽名對象。
Ⅳ 現在密碼學採用的演算法主要有什麼
現代密碼學將演算法分為具有不同功能的幾種
常用的主要有三種:
1.對稱密碼演算法
DES演算法——二十世紀七十年代提出,曾經稱霸對稱加密領域30年
AES演算法——二十一世紀初提出用以取代DES演算法
IDEA演算法——二十世紀九十年代初提出,也是一種流行演算法
RC4演算法——經典的流密碼演算法
2.公鑰密碼演算法
D-H演算法——用於密鑰協商,是第一種使用的公鑰演算法,基於離散對數難解問題
RSA演算法——最常用的公鑰演算法,功能強大
3.哈希函數(雜湊函數)
MD5——常用演算法,用於產生80比特的輸出
SHA-1——也是常用演算法,用於產生128比特輸出
---
這是最經典的若干種演算法
說的不對之處請指正
------
個人意見 僅供參考
Ⅵ 數據在網路上傳輸為什麼要加密現在常用的數據加密演算法主要有哪些
因為網路傳輸的過程中存在信息傳輸的安全性,而通過數據的加密可以在一定程
度上提高數據傳輸的安全,保證傳輸數據的完整性。
Ⅶ 目前常用的加密方法主要有兩種是什麼
目前常用的加密方法主要有兩種,分別為:私有密鑰加密和公開密鑰加密。私有密鑰加密法的特點信息發送方與信息接收方均需採用同樣的密鑰,具有對稱性,也稱對稱加密。公開密鑰加密,又稱非對稱加密,採用一對密鑰,一個是私人密鑰,另一個則是公開密鑰。
私有密鑰加密
私有密鑰加密,指在計算機網路上甲、乙兩用戶之間進行通信時,發送方甲為了保護要傳輸的明文信息不被第三方竊取,採用密鑰A對信息進行加密而形成密文M並發送給接收方乙,接收方乙用同樣的一把密鑰A對收到的密文M進行解密,得到明文信息,從而完成密文通信目的的方法。
這種信息加密傳輸方式,就稱為私有密鑰加密法。
私有密鑰加密的特點:
私有密鑰加密法的一個最大特點是:信息發送方與信息接收方均需採用同樣的密鑰,具有對稱性,所以私有密鑰加密又稱為對稱密鑰加密。
私有密鑰加密原理:
私有加密演算法使用單個私鑰來加密和解密數據。由於具有密鑰的任意一方都可以使用該密鑰解密數據,因此必須保證密鑰未被授權的代理得到。
公開密鑰加密
公開密鑰加密(public-key cryptography),也稱為非對稱加密(asymmetric cryptography),一種密碼學演算法類型,在這種密碼學方法中,需要一對密鑰,一個是私人密鑰,另一個則是公開密鑰。
這兩個密鑰是數學相關,用某用戶密鑰加密後所得的信息,只能用該用戶的解密密鑰才能解密。如果知道了其中一個,並不能計算出另外一個。因此如果公開了一對密鑰中的一個,並不會危害到另外一個的秘密性質。稱公開的密鑰為公鑰;不公開的密鑰為私鑰。
Ⅷ 計算機密碼學中有哪些加密演算法
傳統密碼Autokey密碼
置換密碼
二字母組代替密碼
(by
Charles
Wheatstone)
字母替換密碼
希爾密碼
維吉尼亞密碼
替換密碼
凱撒密碼
ROT13
仿射密碼
Atbash密碼
換位密碼
Scytale
Grille密碼
VIC密碼
(種復雜手工密碼五十代早期至少名蘇聯間諜使用十安全)
組密碼包括
DES、IDEA、SAFER、Blowfish
Skipjack
-
美家安全局(US
National
Security
AgencyNSA)限制器晶元使用算
置換加密字母順序重新排列;替換加密組字母換其字母或符號
DES(Data
Encryption
Standard):數據加密標准速度較快適用於加密量數據場合
RSA:由
RSA
公司發明支持變密鑰公共密鑰算需要加密文件塊度變MD5
MD5算簡要敘述:MD5512位組處理輸入信息且每組劃1632位組經系列處理算輸由四32位組組四32位組級聯128位散列值
Ⅸ 目前常用的加密解密演算法有哪些
加密演算法
加密技術是對信息進行編碼和解碼的技術,編碼是把原來可讀信息(又稱明文)譯成代碼形式(又稱密文),其逆過程就是解碼(解密)。加密技術的要點是加密演算法,加密演算法可以分為對稱加密、不對稱加密和不可逆加密三類演算法。
對稱加密演算法 對稱加密演算法是應用較早的加密演算法,技術成熟。在對稱加密演算法中,數據發信方將明文(原始數據)和加密密鑰一起經過特殊加密演算法處理後,使其變成復雜的加密密文發送出去。收信方收到密文後,若想解讀原文,則需要使用加密用過的密鑰及相同演算法的逆演算法對密文進行解密,才能使其恢復成可讀明文。在對稱加密演算法中,使用的密鑰只有一個,發收信雙方都使用這個密鑰對數據進行加密和解密,這就要求解密方事先必須知道加密密鑰。對稱加密演算法的特點是演算法公開、計算量小、加密速度快、加密效率高。不足之處是,交易雙方都使用同樣鑰匙,安全性得不到保證。此外,每對用戶每次使用對稱加密演算法時,都需要使用其他人不知道的惟一鑰匙,這會使得發收信雙方所擁有的鑰匙數量成幾何級數增長,密鑰管理成為用戶的負擔。對稱加密演算法在分布式網路系統上使用較為困難,主要是因為密鑰管理困難,使用成本較高。在計算機專網系統中廣泛使用的對稱加密演算法有DES和IDEA等。美國國家標准局倡導的AES即將作為新標准取代DES。
不對稱加密演算法不對稱加密演算法使用兩把完全不同但又是完全匹配的一對鑰匙—公鑰和私鑰。在使用不對稱加密演算法加密文件時,只有使用匹配的一對公鑰和私鑰,才能完成對明文的加密和解密過程。加密明文時採用公鑰加密,解密密文時使用私鑰才能完成,而且發信方(加密者)知道收信方的公鑰,只有收信方(解密者)才是唯一知道自己私鑰的人。不對稱加密演算法的基本原理是,如果發信方想發送只有收信方才能解讀的加密信息,發信方必須首先知道收信方的公鑰,然後利用收信方的公鑰來加密原文;收信方收到加密密文後,使用自己的私鑰才能解密密文。顯然,採用不對稱加密演算法,收發信雙方在通信之前,收信方必須將自己早已隨機生成的公鑰送給發信方,而自己保留私鑰。由於不對稱演算法擁有兩個密鑰,因而特別適用於分布式系統中的數據加密。廣泛應用的不對稱加密演算法有RSA演算法和美國國家標准局提出的DSA。以不對稱加密演算法為基礎的加密技術應用非常廣泛。
不可逆加密演算法 不可逆加密演算法的特徵是加密過程中不需要使用密鑰,輸入明文後由系統直接經過加密演算法處理成密文,這種加密後的數據是無法被解密的,只有重新輸入明文,並再次經過同樣不可逆的加密演算法處理,得到相同的加密密文並被系統重新識別後,才能真正解密。顯然,在這類加密過程中,加密是自己,解密還得是自己,而所謂解密,實際上就是重新加一次密,所應用的「密碼」也就是輸入的明文。不可逆加密演算法不存在密鑰保管和分發問題,非常適合在分布式網路系統上使用,但因加密計算復雜,工作量相當繁重,通常只在數據量有限的情形下使用,如廣泛應用在計算機系統中的口令加密,利用的就是不可逆加密演算法。近年來,隨著計算機系統性能的不斷提高,不可逆加密的應用領域正在逐漸增大。在計算機網路中應用較多不可逆加密演算法的有RSA公司發明的MD5演算法和由美國國家標准局建議的不可逆加密標准SHS(Secure Hash Standard:安全雜亂信息標准)等。
加密技術
加密演算法是加密技術的基礎,任何一種成熟的加密技術都是建立多種加密演算法組合,或者加密演算法和其他應用軟體有機結合的基礎之上的。下面我們介紹幾種在計算機網路應用領域廣泛應用的加密技術。
非否認(Non-repudiation)技術 該技術的核心是不對稱加密演算法的公鑰技術,通過產生一個與用戶認證數據有關的數字簽名來完成。當用戶執行某一交易時,這種簽名能夠保證用戶今後無法否認該交易發生的事實。由於非否認技術的操作過程簡單,而且直接包含在用戶的某類正常的電子交易中,因而成為當前用戶進行電子商務、取得商務信任的重要保證。
PGP(Pretty Good Privacy)技術 PGP技術是一個基於不對稱加密演算法RSA公鑰體系的郵件加密技術,也是一種操作簡單、使用方便、普及程度較高的加密軟體。PGP技術不但可以對電子郵件加密,防止非授權者閱讀信件;還能對電子郵件附加數字簽名,使收信人能明確了解發信人的真實身份;也可以在不需要通過任何保密渠道傳遞密鑰的情況下,使人們安全地進行保密通信。PGP技術創造性地把RSA不對稱加密演算法的方便性和傳統加密體系結合起來,在數字簽名和密鑰認證管理機制方面採用了無縫結合的巧妙設計,使其幾乎成為最為流行的公鑰加密軟體包。
數字簽名(Digital Signature)技術 數字簽名技術是不對稱加密演算法的典型應用。數字簽名的應用過程是,數據源發送方使用自己的私鑰對數據校驗和或其他與數據內容有關的變數進行加密處理,完成對數據的合法「簽名」,數據接收方則利用對方的公鑰來解讀收到的「數字簽名」,並將解讀結果用於對數據完整性的檢驗,以確認簽名的合法性。數字簽名技術是在網路系統虛擬環境中確認身份的重要技術,完全可以代替現實過程中的「親筆簽字」,在技術和法律上有保證。在公鑰與私鑰管理方面,數字簽名應用與加密郵件PGP技術正好相反。在數字簽名應用中,發送者的公鑰可以很方便地得到,但他的私鑰則需要嚴格保密。
PKI(Public Key Infrastructure)技術 PKI技術是一種以不對稱加密技術為核心、可以為網路提供安全服務的公鑰基礎設施。PKI技術最初主要應用在Internet環境中,為復雜的互聯網系統提供統一的身份認證、數據加密和完整性保障機制。由於PKI技術在網路安全領域所表現出的巨大優勢,因而受到銀行、證券、政府等核心應用系統的青睞。PKI技術既是信息安全技術的核心,也是電子商務的關鍵和基礎技術。由於通過網路進行的電子商務、電子政務等活動缺少物理接觸,因而使得利用電子方式驗證信任關系變得至關重要,PKI技術恰好能夠有效解決電子商務應用中的機密性、真實性、完整性、不可否認性和存取控制等安全問題。一個實用的PKI體系還必須充分考慮互操作性和可擴展性。PKI體系所包含的認證中心(CA)、注冊中心(RA)、策略管理、密鑰與證書管理、密鑰備份與恢復、撤銷系統等功能模塊應該有機地結合在一起。
加密的未來趨勢
盡管雙鑰密碼體制比單鑰密碼體制更為可靠,但由於計算過於復雜,雙鑰密碼體制在進行大信息量通信時,加密速率僅為單鑰體制的1/100,甚至是 1/1000。正是由於不同體制的加密演算法各有所長,所以在今後相當長的一段時期內,各類加密體制將會共同發展。而在由IBM等公司於1996年聯合推出的用於電子商務的協議標准SET(Secure Electronic Transaction)中和1992年由多國聯合開發的PGP技術中,均採用了包含單鑰密碼、雙鑰密碼、單向雜湊演算法和隨機數生成演算法在內的混合密碼系統的動向來看,這似乎從一個側面展示了今後密碼技術應用的未來。
在單鑰密碼領域,一次一密被認為是最為可靠的機制,但是由於流密碼體制中的密鑰流生成器在演算法上未能突破有限循環,故一直未被廣泛應用。如果找到一個在演算法上接近無限循環的密鑰流生成器,該體制將會有一個質的飛躍。近年來,混沌學理論的研究給在這一方向產生突破帶來了曙光。此外,充滿生氣的量子密碼被認為是一個潛在的發展方向,因為它是基於光學和量子力學理論的。該理論對於在光纖通信中加強信息安全、對付擁有量子計算能力的破譯無疑是一種理想的解決方法。
由於電子商務等民用系統的應用需求,認證加密演算法也將有較大發展。此外,在傳統密碼體制中,還將會產生類似於IDEA這樣的新成員,新成員的一個主要特徵就是在演算法上有創新和突破,而不僅僅是對傳統演算法進行修正或改進。密碼學是一個正在不斷發展的年輕學科,任何未被認識的加/解密機制都有可能在其中佔有一席之地。
目前,對信息系統或電子郵件的安全問題,還沒有一個非常有效的解決方案,其主要原因是由於互聯網固有的異構性,沒有一個單一的信任機構可以滿足互聯網全程異構性的所有需要,也沒有一個單一的協議能夠適用於互聯網全程異構性的所有情況。解決的辦法只有依靠軟體代理了,即採用軟體代理來自動管理用戶所持有的證書(即用戶所屬的信任結構)以及用戶所有的行為。每當用戶要發送一則消息或一封電子郵件時,代理就會自動與對方的代理協商,找出一個共同信任的機構或一個通用協議來進行通信。在互聯網環境中,下一代的安全信息系統會自動為用戶發送加密郵件,同樣當用戶要向某人發送電子郵件時,用戶的本地代理首先將與對方的代理交互,協商一個適合雙方的認證機構。當然,電子郵件也需要不同的技術支持,因為電子郵件不是端到端的通信,而是通過多個中間機構把電子郵件分程傳遞到各自的通信機器上,最後到達目的地。