1. 公元前一世紀什麼密碼被用於高爐戰爭中這是早期的一種簡易簡單易行的單字母替
凱撒密碼吧。。
2. 世界上的密碼
密碼學是研究編制密碼和破譯密碼的技術科學。研究密碼變化的客觀規律,應用於編制密碼以保守通信秘密的,稱為編碼學;應用於破譯密碼以獲取通信情報的,稱為破譯學,總稱密碼學。
密碼是通信雙方按約定的法則進行信息特殊變換的一種重要保密手段。依照這些法則,變明文為密文,稱為加密變換;變密文為明文,稱為脫密變換。密碼在早期僅對文字或數碼進行加、脫密變換,隨著通信技術的發展,對語音、圖像、數據等都可實施加、脫密變換。
密碼學是在編碼與破譯的斗爭實踐中逐步發展起來的,並隨著先進科學技術的應用,已成為一門綜合性的尖端技術科學。它與語言學、數學、電子學、聲學、資訊理論、計算機科學等有著廣泛而密切的聯系。它的現實研究成果,特別是各國政府現用的密碼編制及破譯手段都具有高度的機密性。
進行明密變換的法則,稱為密碼的體制。指示這種變換的參數,稱為密鑰。它們是密碼編制的重要組成部分。密碼體制的基本類型可以分為四種:錯亂——按照規定的圖形和線路,改變明文字母或數碼等的位置成為密文;代替——用一個或多個代替表將明文字母或數碼等代替為密文;密本——用預先編定的字母或數字密碼組,代替一定的片語單詞等變明文為密文;加亂——用有限元素組成的一串序列作為亂數,按規定的演算法,同明文序列相結合變成密文。以上四種密碼體制,既可單獨使用,也可混合使用 ,以編制出各種復雜度很高的實用密碼。
20世紀70年代以來,一些學者提出了公開密鑰體制,即運用單向函數的數學原理,以實現加、脫密密鑰的分離。加密密鑰是公開的,脫密密鑰是保密的。這種新的密碼體制,引起了密碼學界的廣泛注意和探討。
利用文字和密碼的規律,在一定條件下,採取各種技術手段,通過對截取密文的分析,以求得明文,還原密碼編制,即破譯密碼。破譯不同強度的密碼,對條件的要求也不相同,甚至很不相同。
中國古代秘密通信的手段,已有一些近於密碼的雛形。宋曾公亮、丁度等編撰《武經總要》「字驗」記載,北宋前期,在作戰中曾用一首五言律詩的40個漢字,分別代表40種情況或要求,這種方式已具有了密本體制的特點。
1871年,由上海大北水線電報公司選用6899個漢字,代以四碼數字,成為中國最初的商用明碼本,同時也設計了由明碼本改編為密本及進行加亂的方法。在此基礎上,逐步發展為各種比較復雜的密碼。
在歐洲,公元前405年,斯巴達的將領來山得使用了原始的錯亂密碼;公元前一世紀,古羅馬皇帝凱撒曾使用有序的單表代替密碼;之後逐步發展為密本、多表代替及加亂等各種密碼體制。
二十世紀初,產生了最初的可以實用的機械式和電動式密碼機,同時出現了商業密碼機公司和市場。60年代後,電子密碼機得到較快的發展和廣泛的應用,使密碼的發展進入了一個新的階段。
密碼破譯是隨著密碼的使用而逐步產生和發展的。1412年,波斯人卡勒卡尚迪所編的網路全書中載有破譯簡單代替密碼的方法。到16世紀末期,歐洲一些國家設有專職的破譯人員,以破譯截獲的密信。密碼破譯技術有了相當的發展。1863年普魯士人卡西斯基所著《密碼和破譯技術》,以及1883年法國人克爾克霍夫所著《軍事密碼學》等著作,都對密碼學的理論和方法做過一些論述和探討。1949年美國人香農發表了《秘密體制的通信理論》一文,應用資訊理論的原理分析了密碼學中的一些基本問題。
自19世紀以來,由於電報特別是無線電報的廣泛使用,為密碼通信和第三者的截收都提供了極為有利的條件。通信保密和偵收破譯形成了一條斗爭十分激烈的隱蔽戰線。
1917年,英國破譯了德國外長齊默爾曼的電報,促成了美國對德宣戰。1942年,美國從破譯日本海軍密報中,獲悉日軍對中途島地區的作戰意圖和兵力部署,從而能以劣勢兵力擊破日本海軍的主力,扭轉了太平洋地區的戰局。在保衛英倫三島和其他許多著名的歷史事件中,密碼破譯的成功都起到了極其重要的作用,這些事例也從反面說明了密碼保密的重要地位和意義。
當今世界各主要國家的政府都十分重視密碼工作,有的設立龐大機構,撥出巨額經費,集中數以萬計的專家和科技人員,投入大量高速的電子計算機和其他先進設備進行工作。與此同時,各民間企業和學術界也對密碼日益重視,不少數學家、計算機學家和其他有關學科的專家也投身於密碼學的研究行列,更加速了密碼學的發展。
現在密碼已經成為單獨的學科,從傳統意義上來說,密碼學是研究如何把信息轉換成一種隱蔽的方式並阻止其他人得到它。
密碼學是一門跨學科科目,從很多領域衍生而來:它可以被看做是信息理論,卻使用了大量的數學領域的工具,眾所周知的如數論和有限數學。
原始的信息,也就是需要被密碼保護的信息,被稱為明文。加密是把原始信息轉換成不可讀形式,也就是密碼的過程。解密是加密的逆過程,從加密過的信息中得到原始信息。cipher是加密和解密時使用的演算法。
最早的隱寫術只需紙筆,現在稱為經典密碼學。其兩大類別為置換加密法,將字母的順序重新排列;替換加密法,將一組字母換成其他字母或符號。經典加密法的資訊易受統計的攻破,資料越多,破解就更容易,使用分析頻率就是好辦法。經典密碼學現在仍未消失,經常出現在智力游戲之中。在二十世紀早期,包括轉輪機在內的一些機械設備被發明出來用於加密,其中最著名的是用於第二次世界大戰的密碼機Enigma。這些機器產生的密碼相當大地增加了密碼分析的難度。比如針對Enigma各種各樣的攻擊,在付出了相當大的努力後才得以成功。
傳統密碼學
Autokey密碼
置換密碼
二字母組代替密碼 (by Charles Wheatstone)
多字母替換密碼
希爾密碼
維吉尼亞密碼
替換密碼
凱撒密碼
ROT13
仿射密碼
Atbash密碼
換位密碼
Scytale
Grille密碼
VIC密碼 (一種復雜的手工密碼,在五十年代早期被至少一名蘇聯間諜使用過,在當時是十分安全的)
對傳統密碼學的攻擊
頻率分析
重合指數
現代演算法,方法評估與選擇工程
標准機構
the Federal Information Processing Standards Publication program (run by NIST to proce standards in many areas to guide operations of the US Federal government; many FIPS Pubs are cryptography related, ongoing)
the ANSI standardization process (proces many standards in many areas; some are cryptography related, ongoing)
ISO standardization process (proces many standards in many areas; some are cryptography related, ongoing)
IEEE standardization process (proces many standards in many areas; some are cryptography related, ongoing)
IETF standardization process (proces many standards (called RFCs) in many areas; some are cryptography related, ongoing)
See Cryptography standards
加密組織
NSA internal evaluation/selections (surely extensive, nothing is publicly known of the process or its results for internal use; NSA is charged with assisting NIST in its cryptographic responsibilities)
GCHQ internal evaluation/selections (surely extensive, nothing is publicly known of the process or its results for GCHQ use; a division of GCHQ is charged with developing and recommending cryptographic standards for the UK government)
DSD Australian SIGINT agency - part of ECHELON
Communications Security Establishment (CSE) — Canadian intelligence agency.
公開的努力成果
the DES selection (NBS selection process, ended 1976)
the RIPE division of the RACE project (sponsored by the European Union, ended mid-'80s)
the AES competition (a 'break-off' sponsored by NIST; ended 2001)
the NESSIE Project (evaluation/selection program sponsored by the European Union; ended 2002)
the CRYPTREC program (Japanese government sponsored evaluation/recommendation project; draft recommendations published 2003)
the Internet Engineering Task Force (technical body responsible for Internet standards -- the Request for Comment series: ongoing)
the CrypTool project (eLearning programme in English and German; freeware; exhaustive ecational tool about cryptography and cryptanalysis)
加密散列函數 (消息摘要演算法,MD演算法)
加密散列函數
消息認證碼
Keyed-hash message authentication code
EMAC (NESSIE selection MAC)
HMAC (NESSIE selection MAC; ISO/IEC 9797-1, FIPS and IETF RFC)
TTMAC 也稱 Two-Track-MAC (NESSIE selection MAC; K.U.Leuven (Belgium) & debis AG (Germany))
UMAC (NESSIE selection MAC; Intel, UNevada Reno, IBM, Technion, & UCal Davis)
MD5 (系列消息摘要演算法之一,由MIT的Ron Rivest教授提出; 128位摘要)
SHA-1 (NSA開發的160位摘要,FIPS標准之一;第一個發行發行版本被發現有缺陷而被該版本代替; NIST/NSA 已經發布了幾個具有更長'摘要'長度的變種; CRYPTREC推薦 (limited))
SHA-256 (NESSIE 系列消息摘要演算法, FIPS標准之一180-2,摘要長度256位 CRYPTREC recommendation)
SHA-384 (NESSIE 列消息摘要演算法, FIPS標准之一180-2,摘要長度384位; CRYPTREC recommendation)
SHA-512 (NESSIE 列消息摘要演算法, FIPS標准之一180-2,摘要長度512位; CRYPTREC recommendation)
RIPEMD-160 (在歐洲為 RIPE 項目開發, 160位摘要;CRYPTREC 推薦 (limited))
Tiger (by Ross Anderson et al)
Snefru
Whirlpool (NESSIE selection hash function, Scopus Tecnologia S.A. (Brazil) & K.U.Leuven (Belgium))
公/私鑰加密演算法(也稱 非對稱性密鑰演算法)
ACE-KEM (NESSIE selection asymmetric encryption scheme; IBM Zurich Research)
ACE Encrypt
Chor-Rivest
Diffie-Hellman (key agreement; CRYPTREC 推薦)
El Gamal (離散對數)
ECC(橢圓曲線密碼演算法) (離散對數變種)
PSEC-KEM (NESSIE selection asymmetric encryption scheme; NTT (Japan); CRYPTREC recommendation only in DEM construction w/SEC1 parameters) )
ECIES (Elliptic Curve Integrated Encryption System; Certicom Corp)
ECIES-KEM
ECDH (橢圓曲線Diffie-Hellman 密鑰協議; CRYPTREC推薦)
EPOC
Merkle-Hellman (knapsack scheme)
McEliece
NTRUEncrypt
RSA (因數分解)
RSA-KEM (NESSIE selection asymmetric encryption scheme; ISO/IEC 18033-2 draft)
RSA-OAEP (CRYPTREC 推薦)
Rabin cryptosystem (因數分解)
Rabin-SAEP
HIME(R)
XTR
公/私鑰簽名演算法
DSA(zh:數字簽名;zh-tw:數位簽章演算法) (來自NSA,zh:數字簽名;zh-tw:數位簽章標准(DSS)的一部分; CRYPTREC 推薦)
Elliptic Curve DSA (NESSIE selection digital signature scheme; Certicom Corp); CRYPTREC recommendation as ANSI X9.62, SEC1)
Schnorr signatures
RSA簽名
RSA-PSS (NESSIE selection digital signature scheme; RSA Laboratories); CRYPTREC recommendation)
RSASSA-PKCS1 v1.5 (CRYPTREC recommendation)
Nyberg-Rueppel signatures
MQV protocol
Gennaro-Halevi-Rabin signature scheme
Cramer-Shoup signature scheme
One-time signatures
Lamport signature scheme
Bos-Chaum signature scheme
Undeniable signatures
Chaum-van Antwerpen signature scheme
Fail-stop signatures
Ong-Schnorr-Shamir signature scheme
Birational permutation scheme
ESIGN
ESIGN-D
ESIGN-R
Direct anonymous attestation
NTRUSign用於移動設備的公鑰加密演算法, 密鑰比較短小但也能達到高密鑰ECC的加密效果
SFLASH (NESSIE selection digital signature scheme (esp for smartcard applications and similar); Schlumberger (France))
Quartz
密碼鑒定
Key authentication
Public Key Infrastructure (PKI)
Identity-Based Cryptograph (IBC)
X.509
Public key certificate
Certificate authority
Certificate revocation list
ID-based cryptography
Certificate-based encryption
Secure key issuing cryptography
Certificateless cryptography
匿名認證系統
GPS (NESSIE selection anonymous identification scheme; Ecole Normale Supérieure, France Télécom, & La Poste)
秘密鑰演算法 (也稱 對稱性密鑰演算法)
流密碼
A5/1, A5/2 (GSM行動電話標准中指定的密碼標准)
BMGL
Chameleon
FISH (by Siemens AG)
二戰'Fish'密碼
Geheimfernschreiber (二戰時期Siemens AG的機械式一次一密密碼, 被布萊奇利(Bletchley)庄園稱為STURGEON)
Schlusselzusatz (二戰時期 Lorenz的機械式一次一密密碼, 被布萊奇利(Bletchley)庄園稱為[[tunny)
HELIX
ISAAC (作為偽隨機數發生器使用)
Leviathan (cipher)
LILI-128
MUG1 (CRYPTREC 推薦使用)
MULTI-S01 (CRYPTREC 推薦使用)
一次一密 (Vernam and Mauborgne, patented mid-'20s; an extreme stream cypher)
Panama
Pike (improvement on FISH by Ross Anderson)
RC4 (ARCFOUR) (one of a series by Prof Ron Rivest of MIT; CRYPTREC 推薦使用 (limited to 128-bit key))
CipherSaber (RC4 variant with 10 byte random IV, 易於實現)
SEAL
SNOW
SOBER
SOBER-t16
SOBER-t32
WAKE
分組密碼
分組密碼操作模式
乘積密碼
Feistel cipher (由Horst Feistel提出的分組密碼設計模式)
Advanced Encryption Standard (分組長度為128位; NIST selection for the AES, FIPS 197, 2001 -- by Joan Daemen and Vincent Rijmen; NESSIE selection; CRYPTREC 推薦使用)
Anubis (128-bit block)
BEAR (由流密碼和Hash函數構造的分組密碼, by Ross Anderson)
Blowfish (分組長度為128位; by Bruce Schneier, et al)
Camellia (分組長度為128位; NESSIE selection (NTT & Mitsubishi Electric); CRYPTREC 推薦使用)
CAST-128 (CAST5) (64 bit block; one of a series of algorithms by Carlisle Adams and Stafford Tavares, who are insistent (indeed, adamant) that the name is not e to their initials)
CAST-256 (CAST6) (128位分組長度; CAST-128的後繼者,AES的競爭者之一)
CIPHERUNICORN-A (分組長度為128位; CRYPTREC 推薦使用)
CIPHERUNICORN-E (64 bit block; CRYPTREC 推薦使用 (limited))
CMEA — 在美國行動電話中使用的密碼,被發現有弱點.
CS-Cipher (64位分組長度)
DESzh:數字;zh-tw:數位加密標准(64位分組長度; FIPS 46-3, 1976)
DEAL — 由DES演變來的一種AES候選演算法
DES-X 一種DES變種,增加了密鑰長度.
FEAL
GDES —一個DES派生,被設計用來提高加密速度.
Grand Cru (128位分組長度)
Hierocrypt-3 (128位分組長度; CRYPTREC 推薦使用))
Hierocrypt-L1 (64位分組長度; CRYPTREC 推薦使用 (limited))
International Data Encryption Algorithm (IDEA) (64位分組長度-- 蘇黎世ETH的James Massey & X Lai)
Iraqi Block Cipher (IBC)
KASUMI (64位分組長度; 基於MISTY1, 被用於下一代W-CDMA cellular phone 保密)
KHAZAD (64-bit block designed by Barretto and Rijmen)
Khufu and Khafre (64位分組密碼)
LION (由流密碼和Hash函數構造的分組密碼, by Ross Anderson)
LOKI89/91 (64位分組密碼)
LOKI97 (128位分組長度的密碼, AES候選者)
Lucifer (by Tuchman et al of IBM, early 1970s; modified by NSA/NBS and released as DES)
MAGENTA (AES 候選者)
Mars (AES finalist, by Don Coppersmith et al)
MISTY1 (NESSIE selection 64-bit block; Mitsubishi Electric (Japan); CRYPTREC 推薦使用 (limited))
MISTY2 (分組長度為128位: Mitsubishi Electric (Japan))
Nimbus (64位分組)
Noekeon (分組長度為128位)
NUSH (可變分組長度(64 - 256位))
Q (分組長度為128位)
RC2 64位分組,密鑰長度可變.
RC6 (可變分組長度; AES finalist, by Ron Rivest et al)
RC5 (by Ron Rivest)
SAFER (可變分組長度)
SC2000 (分組長度為128位; CRYPTREC 推薦使用)
Serpent (分組長度為128位; AES finalist by Ross Anderson, Eli Biham, Lars Knudsen)
SHACAL-1 (256-bit block)
SHACAL-2 (256-bit block cypher; NESSIE selection Gemplus (France))
Shark (grandfather of Rijndael/AES, by Daemen and Rijmen)
Square (father of Rijndael/AES, by Daemen and Rijmen)
3-Way (96 bit block by Joan Daemen)
TEA(小型加密演算法)(by David Wheeler & Roger Needham)
Triple DES (by Walter Tuchman, leader of the Lucifer design team -- not all triple uses of DES increase security, Tuchman's does; CRYPTREC 推薦使用 (limited), only when used as in FIPS Pub 46-3)
Twofish (分組長度為128位; AES finalist by Bruce Schneier, et al)
XTEA (by David Wheeler & Roger Needham)
多表代替密碼機密碼
Enigma (二戰德國轉輪密碼機--有很多變種,多數變種有很大的用戶網路)
紫密(Purple) (二戰日本外交最高等級密碼機;日本海軍設計)
SIGABA (二戰美國密碼機,由William Friedman, Frank Rowlett, 等人設計)
TypeX (二戰英國密碼機)
Hybrid code/cypher combinations
JN-25 (二戰日本海軍的高級密碼; 有很多變種)
Naval Cypher 3 (30年代和二戰時期英國皇家海軍的高級密碼)
可視密碼
有密級的 密碼 (美國)
EKMS NSA的電子密鑰管理系統
FNBDT NSA的加密窄帶話音標准
Fortezza encryption based on portable crypto token in PC Card format
KW-26 ROMULUS 電傳加密機(1960s - 1980s)
KY-57 VINSON 戰術電台語音加密
SINCGARS 密碼控制跳頻的戰術電台
STE 加密電話
STU-III 較老的加密電話
TEMPEST prevents compromising emanations
Type 1 procts
破譯密碼
被動攻擊
選擇明文攻擊
選擇密文攻擊
自適應選擇密文攻擊
暴力攻擊
密鑰長度
唯一解距離
密碼分析學
中間相會攻擊
差分密碼分析
線性密碼分析
Slide attack cryptanalysis
Algebraic cryptanalysis
XSL attack
Mod n cryptanalysis
弱密鑰和基於口令的密碼
暴力攻擊
字典攻擊
相關密鑰攻擊
Key derivation function
弱密鑰
口令
Password-authenticated key agreement
Passphrase
Salt
密鑰傳輸/交換
BAN Logic
Needham-Schroeder
Otway-Rees
Wide Mouth Frog
Diffie-Hellman
中間人攻擊
偽的和真的隨機數發生器
PRNG
CSPRNG
硬體隨機數發生器
Blum Blum Shub
Yarrow (by Schneier, et al)
Fortuna (by Schneier, et al)
ISAAC
基於SHA-1的偽隨機數發生器, in ANSI X9.42-2001 Annex C.1 (CRYPTREC example)
PRNG based on SHA-1 for general purposes in FIPS Pub 186-2 (inc change notice 1) Appendix 3.1 (CRYPTREC example)
PRNG based on SHA-1 for general purposes in FIPS Pub 186-2 (inc change notice 1) revised Appendix 3.1 (CRYPTREC example)
匿名通訊
Dining cryptographers protocol (by David Chaum)
匿名投遞
pseudonymity
匿名網路銀行業務
Onion Routing
法律問題
Cryptography as free speech
Bernstein v. United States
DeCSS
Phil Zimmermann
Export of cryptography
Key escrow and Clipper Chip
Digital Millennium Copyright Act
zh:數字版權管理;zh-tw:數位版權管理 (DRM)
Cryptography patents
RSA (now public domain}
David Chaum and digital cash
Cryptography and Law Enforcement
Wiretaps
Espionage
不同國家的密碼相關法律
Official Secrets Act (United Kingdom)
Regulation of Investigatory Powers Act 2000 (United Kingdom)
術語
加密金鑰
加密
密文
明文
加密法
Tabula recta
書籍和出版物
密碼學相關書籍
《密碼傳奇》,趙燕楓著,北京:科學出版社,2008年4月
密碼學領域重要出版物
密碼學家
參見List of cryptographers
密碼技術應用
Commitment schemes
Secure multiparty computations
電子投票
認證
數位簽名
Cryptographic engineering
Crypto systems
雜項
Echelon
Espionage
IACR
Ultra
Security engineering
SIGINT
Steganography
Cryptographers
安全套接字層(SSL)
量子密碼
Crypto-anarchism
Cypherpunk
Key escrow
零知識證明
Random oracle model
盲簽名
Blinding (cryptography)
數字時間戳
秘密共享
可信操作系統
Oracle (cryptography)
免費/開源的密碼系統(特指演算法+協議+體制設計)
PGP (a name for any of several related crypto systems, some of which, beginning with the acquisition of the name by Network Associates, have not been Free Software in the GNU sense)
FileCrypt (an open source/commercial command line version of PGP from Veridis of Denmark, see PGP)
GPG (an open source implementation of the OpenPGP IETF standard crypto system)
SSH (Secure SHell implementing cryptographically protected variants of several common Unix utilities, First developed as open source in Finland by Tatu Ylonen. There is now OpenSSH, an open source implementation supporting both SSH v1 and SSH v2 protocols. There are also commercial implementations.
IPsec (網際網路協議安全IETF標准,IPv6 IETF 標準的必須的組成部分)
Free S/WAN (IPsec的一種開源實現
3. 公元前一世紀什麼密碼被用於高爐戰爭中
那個應該是凱撒密碼。
說白了就是先將布條纏繞在棍子之類的器具上面,然後書寫文字展開以後文字就會變得雜亂無章,後續只需要用同樣直徑的棍子把它再纏繞起來,就可以恢復文字內容,這種方法是比較簡單的,很容易被破解。
4. 世界上第一個被稱之為「密碼」的密碼是什麼
公元前405年,雅典和斯巴達之間的伯羅奔尼撒戰爭已進入尾聲。...雅典間諜送回的腰帶情報,就是世界上最早的密碼情報,具體運用方法是,通信雙方首先約定密碼解讀規則,然後通信—方將腰帶(或羊皮等其他東西)纏繞在約定長度和粗細的木棍上書寫。
5. 誰了解密碼學的發展歷史
發展歷程
密碼學(在西歐語文中,源於希臘語kryptós「隱藏的」,和gráphein「書寫」)是研究如何隱密地傳遞信息的學科。在現代特別指對信息以及其傳輸的數學性研究,常被認為是數學和計算機科學的分支,和資訊理論也密切相關。
著名的密碼學者Ron Rivest解釋道:「密碼學是關於如何在敵人存在的環境中通訊」,自工程學的角度,這相當於密碼學與純數學的異同。密碼學是信息安全等相關議題,如認證、訪問控制的核心。密碼學的首要目的是隱藏信息的涵義,並不是隱藏信息的存在。
密碼學也促進了計算機科學,特別是在於電腦與網路安全所使用的技術,如訪問控制與信息的機密性。密碼學已被應用在日常生活:包括自動櫃員機的晶元卡、電腦使用者存取密碼、電子商務等等。
密碼是通信雙方按約定的法則進行信息特殊變換的一種重要保密手段。依照這些法則,變明文為密文,稱為加密變換;變密文為明文,稱為脫密變換。密碼在早期僅對文字或數碼進行加、脫密變換,隨著通信技術的發展,對語音、圖像、數據等都可實施加、脫密變換。
密碼學是在編碼與破譯的斗爭實踐中逐步發展起來的,並隨著先進科學技術的應用,已成為一門綜合性的尖端技術科學。它與語言學、數學、電子學、聲學、資訊理論、計算機科學等有著廣泛而密切的聯系。它的現實研究成果,特別是各國政府現用的密碼編制及破譯手段都具有高度的機密性。
進行明密變換的法則,稱為密碼的體制。指示這種變換的參數,稱為密鑰。它們是密碼編制的重要組成部分。
密碼體制的基本類型可以分為四種:錯亂按照規定的圖形和線路,改變明文字母或數碼等的位置成為密文;代替——用一個或多個代替表將明文字母或數碼等代替為密文;密本——用預先編定的字母或數字密碼組,代替一定的片語單詞等變明文為密文。
加亂——用有限元素組成的一串序列作為亂數,按規定的演算法,同明文序列相結合變成密文。以上四種密碼體制,既可單獨使用,也可混合使用 ,以編制出各種復雜度很高的實用密碼。
20世紀70年代以來,一些學者提出了公開密鑰體制,即運用單向函數的數學原理,以實現加、脫密密鑰的分離。加密密鑰是公開的,脫密密鑰是保密的。這種新的密碼體制,引起了密碼學界的廣泛注意和探討。
利用文字和密碼的規律,在一定條件下,採取各種技術手段,通過對截取密文的分析,以求得明文,還原密碼編制,即破譯密碼。破譯不同強度的密碼,對條件的要求也不相同,甚至很不相同。
其實在公元前,秘密書信已用於戰爭之中。西洋「史學之父」希羅多德(Herodotus)的《歷史》(The Histories)當中記載了一些最早的秘密書信故事。公元前5世紀,希臘城邦為對抗奴役和侵略,與波斯發生多次沖突和戰爭。
於公元前480年,波斯秘密集結了強大的軍隊,准備對雅典(Athens)和斯巴達(Sparta)發動一次突襲。
希臘人狄馬拉圖斯(Demaratus)在波斯的蘇薩城(Susa)里看到了這次集結,便利用了一層蠟把木板上的字遮蓋住,送往並告知了希臘人波斯的圖謀。最後,波斯海軍覆沒於雅典附近的沙拉米斯灣(Salamis Bay)。
由於古時多數人並不識字,最早的秘密書寫的形式只用到紙筆或等同物品,隨著識字率提高,就開始需要真正的密碼學了。最古典的兩個加密技巧是:
置換(Transposition cipher):將字母順序重新排列,例如『help me』變成『ehpl em』。
替代(substitution cipher):有系統地將一組字母換成其他字母或符號,例如『fly at once』變成『gmz bu podf』(每個字母用下一個字母取代)。
(5)公園前1世紀什麼密碼被用於擴展閱讀:
研究
作為信息安全的主幹學科,西安電子科技大學的密碼學全國第一。
1959年,受錢學森指示,西安電子科技大學在全國率先開展密碼學研究,1988年,西電第一個獲准設立密碼學碩士點,1993年獲准設立密碼學博士點,是全國首批兩個密碼學博士點之一,也是唯一的軍外博士點,1997年開始設有長江學者特聘教授崗位,並成為國家211重點建設學科。
2001年,在密碼學基礎上建立了信息安全專業,是全國首批開設此專業的高校。
西安電子科技大學信息安全專業依託一級國家重點學科「信息與通信工程」(全國第二)、二級國家重點學科「密碼學」(全國第一)組建,是985工程優勢學科創新平台、211工程重點建設學科。
擁有綜合業務網理論及關鍵技術國家重點實驗室、無線網路安全技術國家工程實驗室、現代交換與網路編碼研究中心(香港中文大學—西安電子科技大學)、計算機網路與信息安全教育部重點實驗室、電子信息對抗攻防與模擬技術教育部重點實驗室等多個國家級、省部級科研平台。
在中國密碼學會的34個理事中,西電占據了12個,且2個副理事長都是西電畢業的,中國在國際密碼學會唯一一個會員也出自西電。毫不誇張地說,西電已成為中國培養密碼學和信息安全人才的核心基地。
以下簡單列舉部分西電信安畢業生:來學嘉,國際密碼學會委員,IDEA分組密碼演算法設計者;陳立東,美國標准局研究員;丁存生,香港科技大學教授;邢超平,新加坡NTU教授;馮登國,中國科學院信息安全國家實驗室主任,中國密碼學會副理事長。
張煥國,中國密碼學會常務理事,武漢大學教授、信安掌門人;何大可,中國密碼學會副理事長,西南交通大學教授、信安掌門人;何良生,中國人民解放軍總參謀部首席密碼專家;葉季青,中國人民解放軍密鑰管理中心主任。
西安電子科技大學擁有中國在信息安全領域的三位領袖:肖國鎮、王育民、王新梅。其中肖國鎮教授是我國現代密碼學研究的主要開拓者之一,他提出的關於組合函數的統計獨立性概念,以及進一步提出的組合函數相關免疫性的頻譜特徵化定理,被國際上通稱為肖—Massey定理。
成為密碼學研究的基本工具之一,開拓了流密碼研究的新領域,他是亞洲密碼學會執行委員會委員,中國密碼學會副理事長,還是國際信息安全雜志(IJIS)編委會顧問。
2001年,由西安電子科技大學主持制定的無線網路安全強制性標准——WAPI震動了全世界,中國擁有該技術的完全自主知識產權,打破了美國IEEE在全世界的壟斷,華爾街日報當時曾報道說:「中國無線技術加密標准引發業界慌亂」。
這項技術也是中國在IT領域取得的具少數有世界影響力的重大科技進展之一。
西安電子科技大學的信息安全專業連續多年排名全國第一,就是該校在全國信息安全界領袖地位的最好反映。
參考資料來源:網路-密碼學
6. 《天算》txt全集下載
天算 txt全集小說附件已上傳到網路網盤,點擊免費下載:
內容預覽:
天算
作者:李興春
天算
更新時間2004-11-25 20:18:00 字數:11792
密碼術大事記
公元前5世紀,古希臘斯巴達出現原始的密碼器,用一條帶子纏繞在一根木棍上,沿木棍縱軸方向寫好明文,解下來的帶子上就只有雜亂無章的密文字母。解密者只需找到相同直徑的木棍,再把帶子纏上去,沿木棍縱軸方向即可讀出有意義的明文。這是最早的換位密碼術。
公元前1世紀,著名的愷撒密碼被用於高盧戰爭中,這是一種簡單易行的單字母替代密碼。
公元9世紀,阿拉伯的阿爾—金迪提出解密的頻度分析方法,通過分析計算密文字元出現的頻率破譯密碼。
公元16世紀中期,義大利的卡爾達諾發明了卡爾達諾漏格板,覆蓋在密文上,可從漏格中讀出明文,這是較早的一種分置式密碼。
公元16世紀晚期,英國的菲利普斯利用頻度分析法成功破解蘇格蘭女王瑪麗的密碼信,信中策劃暗殺英國女王伊麗莎白,這次解密將瑪麗送上了斷頭台。
幾乎在同一時期,法國的維熱納爾提出著名的維熱納爾方陣密表和維熱納爾密碼,這是一種多表加密的替代密碼,可使阿爾—金迪和菲利普斯的頻度分析法失效。
公元19世紀,英國的巴貝奇和普魯士的卡西斯基發展了更復雜的頻度分析法,可破解維熱納爾密碼。
公元20世紀初,第一次世界大戰進行到關鍵時刻,英國破譯密碼的專門機構「40號房間」利用繳獲的德國密碼本破譯了著名的「齊默爾曼電報」,促使美國放棄中立參戰,改變了戰爭進程。
……
確認後請採納
7. 公元前500年的古希臘人曾使用了一種著名的加密方法,叫什麼名字
公元前500年的古希臘人曾使用了一種著名的加密方法,叫什麼名字?
Scytale密碼
歷史上最早的有記錄的密碼術應用大約是在公元前5世紀。那個時候,古希臘的斯巴達人使用一種叫作scytale的棍子來傳遞加密信息。在scytale上,斯巴達人會呈螺旋形地纏繞上一條羊皮紙或皮革。發信人在纏繞的羊皮紙上橫著寫下相關的信息,然後將羊皮紙取下,這樣羊皮紙上就是一些毫無意義的字母順序。如果要將這條消息解碼,收件人只要將羊皮紙再次纏繞在相同直徑的棍棒上,這樣就可以讀出信件的內容了。
有一個故事是這樣的:公元前404年,斯巴達的Lysander遇到了一個從波斯回來的信使,他們一行5人中只有這一個人從這趟艱險的旅程中回來了。這個信使解下他的皮帶,Lysander將皮帶卷在scytale上,讀出了信的內容,知道了波斯將要進攻他的意圖,因而提前做好了准備
在我以前看過的一本書里,還有這樣一個版本(多半是沒有什麼歷史依據的):在古希臘,有個奴隸要通過一個關隘,斯巴達人檢查了一下,沒有發現什麼問題。就在要放行的時候,有個將軍突然發現奴隸身上的皮帶上刻有字母,於是就把皮帶拿來檢查,發現這些字母是雜亂無章的,也沒有什麼頭緒。當他無意把皮帶捲起來的時候,卻發現了上面的秘密,一下子這些字母就排列得規律起來了。就這樣,這位將軍發現了敵人的陰謀,這個奴隸也被處死了。
其實scytale密碼和柵欄密碼本質上沒有什麼區別。
大家可以用一根細長的長方形紙條和一支六角形的鉛筆來試著寫一下scytale密碼比如,我寫下了一句話,把紙條取下來後,得到了下面這樣的密文:
stte_ _erh_ _ _noe_ _ _dob_ _ _mpr_ _ _osi_ _ _rtd_ _eog
這里用 _ 表示空格,因為鉛筆剛好六條邊,所以知道空格的多少。(通常可以把空格省略了,或者一般也不知道具體有多少空格。不過我們將會發現,除非整個紙條都寫滿了,不然總是會有空格的,這也為我們破譯時分段帶來了方便。)因為這里知道密鑰k=6,所以按6個一行(包括空格)來分段,得到下面的樣子:
stte_ _
erh_ _ _
noe_ _ _dob_ _ _
mpr_ _
osi_ _ _
rrtd_ _
eog
然後從上到下,一列一列的連起來,就得到了明文:sendmoretroopstothebridge
(send more troops to the bridge)
這里纏繞方向有兩個,一個左旋,一個右旋。如果紙條卷的時候,方向反了,比如寫的時候是左旋,讀的時候是右旋,那麼就會是從右到左來讀出這條消息的內容。大家可以試一下。Xb1r2YD HV:i
另外,如果寫的時候是另一個纏繞方向的話,同樣是上面那句話,把紙條取下來後,就可能會得到下面這樣的密文: `Vyf/l,iA F
eti_ _ _rsr_ _ _opb_ _ _moe_ _ _dohe_ _nrtg_ _etod_ _sy5tkK!~gv
密鑰k=6,所以還是按6個一行(包括空格)來分段,得到下面的樣子
eti_ _ _
rsr_ _ _
opb_ _ _
moe_ _ _dohe_ _
nrtg_ _
etod_ _
s
這時候怎樣得到明文呢? 哈哈,反過來,從下到上,一列一列的連起來,就得到了明文:
sendmoretroopstothebridge
給大家個練習
練習2. 下面是我把紙條纏在一根火腿腸上,寫下的一個句子,得到的密文如下:
toitdarwiuyhwghbdwsnt,這里我把空格省略掉了,看大家破譯得出來不?
8. 世界上最難破解的密碼數字是什麼
密碼主要用於軍事,無論古今中外,概莫能外。據《六韜》所載,3000年前由姜子牙發明了「陰符」,這就是最初的密碼。後被廣泛運用於我國古代維護國家安全的軍事活動和情報活動中。
相傳姜太公帶領的周軍指揮大營被叛兵包圍,情況危急。姜太公令信使突圍,他怕信使遺忘機密,又怕周文王不認識信使,耽誤軍務大事。於是就將自己珍愛的魚竿折成數節,每節長短不一,各代表一件軍機,令信使牢記,不得外傳。
信使回到朝中,文王令左右將幾節魚竿合在一起,親自檢驗。他辨認出是姜太公的心愛之物,便親率大軍解了姜太公之危。事後,姜太公妙思如泉湧,他將魚竿傳信的辦法加以改進,便發明了「陰符」。後來又演化成皇帝和大將各執一半的「虎符」,作為調兵遣將的憑證。
宋朝時,官方便將常用的40個軍事短語,分別用40個字來代替,然後編出一首40個字的詩,作為破譯的「密碼本」。到了明朝,戚繼光發明了反切碼,他還專門編了兩首詩歌,作為「密碼本」。這兩首詩歌是反切碼全部秘密所在,它使用漢字注音方法中的「反切法」,取聲母和韻母按照順序進行編號,再進行讀取。其原理與現代密電碼的設計原理完全一樣,但卻比現代密碼更難破譯。
那麼西方的情況又是如何呢?
在古希臘,人們用一條帶子纏繞在一根木棍上,沿木棍縱軸方向寫好明文,解下來的帶子上就只有雜亂無章的密文字母。解密者只需找到相同直徑的木棍,再把帶子纏上去,沿木棍縱軸方向即可讀出有意義的明文。
公元前1世紀,凱撒密碼被用於高盧戰爭中,這是一種簡單易行的單字母替代密碼。戰前凱撒設計了一種對重要的軍事信息進行加密的方法,即使這些信息被截獲,敵方也不一定能看懂。其實,凱撒密碼字母移位的位數就是一種簡單易行的單字母替代密碼。密碼輪是利用凱撒密碼來應用的,通過把字母移動一定的位數來實現加密和解密。
計算機因解碼而誕生
工業革命後,密碼學也進入了機器時代、電子時代。上世紀20年代,人們發明了各種機械設備來自動進行加解密,於是就出現了密碼機。因為大多數密碼機使用連線接通各個機械轉輪,實現密碼代換,所以也稱之為「轉輪機時代」。
世界上最著名的密碼機是德國在第一次世界大戰時發明的「謎」。
「謎」是世界上第一部機械密碼機,其工作原理奠定了當今計算機加密的基礎。這種密碼融數學、物理、語言、歷史、國際象棋原理、縱橫填字游戲等為一體,被希特勒稱為「神都沒辦法破譯的世界第一密碼」。一份德國報告稱:「謎」能產生220億種不同的密鑰組合,假如一個人日夜不停地工作,每分鍾測試一種密鑰的話,需要約4.2萬年才能將所有的密鑰可能組合試完。
二戰期間,「謎」被德軍大量用於鐵路、企業當中,令德軍保密通訊技術處於領先地位。
盟軍在破譯「謎」密碼過程中,吸納了大批語言學家、人文學家、數學家、科學家加入解碼隊伍。電腦之父圖靈, 1912~1954)也在其列。在圖靈的領導下,這支優秀的隊伍設計了人類的第一部電腦來協助破解工作。1939年8月,解碼隊伍完成了一部針對「謎」型機的密碼破譯機,每秒鍾可處理2000個字元,綽號叫「炸彈」。半年後,它幾乎可以破譯所有被截獲的德國情報,這使得德國的許多重大軍事行動對盟軍都不成為秘密。
雖然計算機因破譯密碼而誕生,而計算機的發展速度遠遠超過人類的想像。上世紀70年代,三位科學家和電腦專家設計了一個世界上最難破解的密碼鎖,意圖利用長長的數學密碼,保護儲存在電腦資料庫里的絕密資料,例如可口可樂配方、核武器方程式等。他們宣稱,人類要想解開他們的密碼,需要4萬億年。
當然,編制密碼鎖的三位專家沒有想到,科學會發展得這樣快。僅僅過了17年,世界五大洲600位專家利用1600部電腦,並且藉助電腦網路,埋頭苦幹8個月,終於攻克了這個號稱千億年難破的超級密碼鎖。結果發現,藏在密碼鎖下的,並非可口可樂配方、核武器方程式,而是這樣一句話:「魔咒是神經質的禿鷹。」
密碼的民用不到30年
你恐怕沒有想到,這樣一個密碼演算法竟讓發明者接受了長達5年的審判。因為,那時的密碼還由軍方壟斷。1991年,美國學者齊默爾曼設計出一種經濟而有效的產品。當時,美國法律規定,密碼演算法屬於軍火,但齊默爾曼還是鋌而走險免費發放了這些加密軟體。齊默爾曼被美國海關當局起訴的罪名是:「非法出口軍火,給敵對國家和恐怖分子提供進攻美國的工具。」
當時,執政者認為,密碼演算法的廣泛應用給恐怖分子、販毒集團以可乘之機。而支持加密公眾化的公民和密碼學家認為,人們亟須使用密碼來保護個人隱私。
隨著電子商務的發展,大的商業公司也加入進來,他們需要強大的密碼演算法使他們能在網路時代保證業務的安全。經過5年的斗爭,柯林頓政府被迫更改了法律,大陪審團也放棄了對齊默爾曼定罪的想法。
隨著網路時代的到來,密碼成了現代都市生活中最普遍運用的個人信息認證手段,它以最簡單的數字組合方式,取代各種煩瑣的個人認證方法。
1993年,銀行業務實行電腦聯網。其中,與個人關系最緊密的是活期存款,銀行從那時開始讓儲戶設置個人密碼。為了方便記憶,身份證的後幾位數、生日、電話號碼、門牌號等,是那時候老百姓最常用的密碼。1996年,全國銀行系統普及了密碼的使用和設備更新。1999年開始,銀行存取款必須使用密碼就變成了硬性規定。現在,多數銀行只要輸入密碼,憑存摺或儲蓄卡,就能進行5萬元以下的支取,無需身份證。
2000年前後,國內各大網站開始大規模開發電子郵箱,那時候網站對郵箱密碼的要求並不太嚴格,規定只要三個字元以上即可,有許多人就用ABC、123等做密碼。在收到了用戶郵箱被盜的反饋後,網站將密碼最少數位提升至6位。現在這些以數字和字母搭配的「軟密碼」也越來越不安全了。例如,前不久國內就有某大型網站被黑客侵入,泄露客戶的大量隱私。
目前大多銀行等涉及高隱私的部門都開發出針對自己安全系統的「硬密碼」,即非要在客戶端插上一個類似於U盤那樣的「密碼」,然後再輸入相應的軟密碼才能登錄相應的網站。
經過數千年的演化,我們又回到了「虎符」的年代,只不過現在的虎符是電子的了。
9. 密碼學的歷史
在公元前,秘密書信已用於戰爭之中。西洋「史學之父」希羅多德(Herodotus)的《歷史》(The Histories)當中記載了一些最早的秘密書信故事。公元前5世紀,希臘城邦為對抗奴役和侵略,與波斯發生多次沖突和戰爭。
於公元前480年,波斯秘密集結了強大的軍隊,准備對雅典(Athens)和斯巴達(Sparta)發動一次突襲。希臘人狄馬拉圖斯在波斯的蘇薩城裡看到了這次集結,便利用了一層蠟把木板上的字遮蓋住,送往並告知了希臘人波斯的圖謀。最後,波斯海軍覆沒於雅典附近的沙拉米斯灣(Salamis Bay)。
由於古時多數人並不識字,最早的秘密書寫的形式只用到紙筆或等同物品,隨著識字率提高,就開始需要真正的密碼學了。最古典的兩個加密技巧是:
1、置換(Transposition cipher):將字母順序重新排列,例如『help me』變成『ehpl em』。
2、替代(substitution cipher):有系統地將一組字母換成其他字母或符號,例如『fly at once』變成『gmz bu podf』(每個字母用下一個字母取代)。
(9)公園前1世紀什麼密碼被用於擴展閱讀:
進行明密變換的法則,稱為密碼的體制。指示這種變換的參數,稱為密鑰。它們是密碼編制的重要組成部分。密碼體制的基本類型可以分為四種:
1、錯亂——按照規定的圖形和線路,改變明文字母或數碼等的位置成為密文;
2、代替——用一個或多個代替表將明文字母或數碼等代替為密文;
3、密本——用預先編定的字母或數字密碼組,代替一定的片語單詞等變明文為密文;
4、加亂——用有限元素組成的一串序列作為亂數,按規定的演算法,同明文序列相結合變成密文。
以上四種密碼體制,既可單獨使用,也可混合使用 ,以編制出各種復雜度很高的實用密碼。