A. H3C交換機和ARP緩存問題。
應該是有arp病毒引起的
B. 三層交換機的工作流程
三層交換技術
近年來的對三層技術的宣傳,耳朵都能起繭子,到處都在喊三層技術,有人說這是個非常新的技術,也有人說,三層交換嘛,不就是路由器和二層交換機的堆疊,也沒有什麼新的玩意,事實果真如此嗎?下面先來通過一個簡單的網路來看看三層交換機的工作過程。
組網比較簡單
使用IP的設備A------------------------三層交換機------------------------使用IP的設備B
比如A要給B發送數據,已知目的IP,那麼A就用子網掩碼取得網路地址,判斷目的IP是否與自己在同一網段。
如果在同一網段,但不知道轉發數據所需的MAC地址,A就發送一個ARP請求,B返回其MAC地址,A用此MAC封裝數據包並發送給交換機,交換機起用二層交換模塊,查找MAC地址表,將數據包轉發到相應的埠。
如果目的IP地址顯示不是同一網段的,那麼A要實現和B的通訊,在流緩存條目中沒有對應MAC地址條目,就將第一個正常數據包發送向一個預設網關,這個預設網關一般在操作系統中已經設好,對應第三層路由模塊,所以可見對於不是同一子網的數據,最先在MAC表中放的是預設網關的MAC地址;然後就由三層模塊接收到此數據包,查詢路由表以確定到達B的路由,將構造一個新的幀頭,其中以預設網關的MAC地址為源MAC地址,以主機B的MAC地址為目的MAC地址。通過一定的識別觸發機制,確立主機A與B的MAC地址及轉發埠的對應關系,並記錄進流緩存條目表,以後的A到B的數據,就直接交由二層交換模塊完成。這就通常所說的一次路由多次轉發。
C. 十萬火急!!!!!!思科三層交換機3560 清理自動獲取地址的命令是不是 clear ip dhcp binding
3560 好像不支持DHCP
D. 公司中共享文件的電腦 ,在三層交換機下可以實現\\ip地址訪問,跨路由器就不可以了但可以ping通
首先肯定是可以的,我覺得你得把交換機的arp緩存清理下,,,然後還不行,就給共享換個ip!!!絕對就可以了
E. 思科設備的ARP緩存定時清除的命令是什麼
你好,
你的需求是定時清空,思科有條命令是手工設置動態ARP條目的存活時間。
思科從埠學到ARP條目後,存在一定的默認保存時間(具體多少不知道),但是我們可以手動指定,由此達到定時刪除動態ARP條目的目的。
手工設定ARP條目在Cisco路由器ARP列表中的保存時間配置如下:
應用於埠:
cisco-3845-A#config t
Enter configuration commands, one per line. End with CNTL/Z.
cisco-3845-A(config)#interface gigabitEthernet 0/0
cisco-3845-A(config-if)#arp timeout ?
<0-2147483> Seconds
cisco-3845-A(config-if)#arp timeout 1200 //設置來自該介面的ARP信息在路由器ARP列表中保存周期為20分鍾
應用於VLAN:
cisco-3845-A#config t
Enter configuration commands, one per line. End with CNTL/Z.
cisco-3845-A(config)#int vlan 6
cisco-3845-A(config-if)#arp timeout ?
<0-2147483> Seconds
cisco-3845-A(config-if)#arp timeout 1200 //設置來自該VLAN的ARP信息在路由器ARP列表中保存時間為20分鍾
請注意,此命令不是定時清空,而是針對每一個學到的ARP條目設置其存活時間。若需定時清空,可以靠定時運行腳本文件來執行。
以上 供參考,有問題M我。
三層交換機一樣的:
3550b#config t
Enter configuration commands, one per line. End with CNTL/Z.
3550b(config)#int vlan 4 //vlan設置
3550b(config-if)#arp timeout ?
<0-2147483> Seconds
3550b(config)#int g0/11 //埠設置
3550b(config-if)#arp timeout ?
<0-2147483> Seconds
F. h3c三層交換機,剛開機,內存就佔用了百分之53左右
什麼型號的三層交換機啊?我這邊開啟了VLAN、MSTP、QoS、埠鏡像、DHCP、VRRP等,現在內存使用率40%,有圖:
G. dcrs三層交換機 怎麼保存配置文件 和刪除啟動配置文件 STARTUP-CONFIG
保存用wr就可以,刪除的到BOOT模式下del 文件
如果你想保存的TFTP上可以配置tftp命令的,找一下命令手冊,我老久不用了,忘記了,給交換配個IP然後定義一個tftp地址在到這個伺服器上就OK了
神碼的垃圾交換吧。。。。
H. 三層交換機工作原理
第三層交換技術
三層交換(也稱多層交換技術,或IP交換技術)是相對於傳統交換概念而提出的。眾所周知,傳統的交換技術是在OSI網路標准模型中的第二層――數據鏈路層進行操作的,而三層交換技術在網路模型中的第三層實現了分組的高速轉發。簡單的說,三層交換技術就是「二層交換技術 + 三層轉發」。三層交換技術的出現,解決了區域網中網段劃分之後網段中的子網必須依賴路由器進行管理的局面,解決了傳統路由器低速、復雜所造成的網路瓶頸問題。
一個具有三層交換功能的設備,是一個帶有第三層路由功能的第二層交換機,但它是兩者的有機結合,而不是簡單地把路由器設備的硬體及軟體疊加在區域網交換機上。我們可以通過以下例子說明三層交換機是如何工作的。
假設兩個使用IP協議的站點A、B通過第三層交換機進行通信,發送站點A在開始發送時,會先拿自己的IP地址與B站的IP地址進行比較,判斷B站是否與自己在同一子網內。若目的站B與發送站A在同一子網內,則進行二層的轉發。具體步驟如下:為了得到站點B的 MAC地址,站點A首先發一個ARP廣播報文,請求站點B的MAC地址。該ARP請求報文進入交換機後,首先進行源MAC地址學習,晶元自動把站點A的MAC地址以及進入交換機的埠號等信息填入到晶元的MAC地址表中,然後在MAC地址表中進行目的地址查找。由於此時是一個廣播報文,交換機則會把這個廣播報文從進入交換機埠所屬的VLAN中進行廣播。B站點收到這個ARP請求報文之後,會立刻發送一個ARP回復報文,這個報文是一個單播報文,目的地址為站點A的MAC地址。該包進入交換機後,同樣,首先進行源MAC地址學習,然後進行目的地址查找,由於此時MAC地址表中已經存在了A站點MAC地址的匹配條目,所以交換機直接把此報文從相應的埠中轉發出去。通過以上一次ARP過程,交換晶元就把站點A和B的信息保存在其MAC地址表中。以後A、B之間進行通信或者同一網段的其它站點想要與A或B通信,交換機就知道該把報文從哪個埠送出。還必須說明的一點是,當查找MAC地址表的時候發現找不到匹配表項,該報文又不是廣播或多播報文,此時此報文被稱為DLF(Destination Lookup Failure)報文,交換機對此類報文的處理就象對收到一個廣播報文處理一樣,將此報文從進入埠所屬的VLAN中擴散出去。從以上過程可以看出,所有二層轉發都是由硬體完成的,無論是MAC地址表的學習過程還是目的地址查找確定輸出埠過程都沒有軟體進行干預。
下面我們看一下兩個站點通過三層交換機實現跨網段通信是怎樣一個過程。
如上例,站點A、B通過三層交換機進行通信。站點A和B所在網段都屬於交換機上的直連網段,若站點A和站點B不在同一子網內,發送站A首先要向其「預設網關」發出ARP請求報文,而「預設網關」的IP地址其實就是三層交換機上站點A所屬VLAN的IP地址。當發送站A對「預設網關」的IP地址廣播出一個ARP請求時,交換機就向發送站A回一個ARP回復報文,告訴站點A交換機此VLAN的MAC地址,同時可以通過軟體把站點A的IP地址、MAC地址、與交換機直接相連的埠號等信息設置到交換晶元的三層硬體表項中。站點A收到這個ARP回復報文之後,進行目的MAC地址替換,把要發給B的包首先發給交換機。交換機收到這個包以後,同樣首先進行源MAC地址學習,目的MAC地址查找,由於此時目的MAC地址為交換機的MAC地址,在這種情況下將會把該報文送到交換晶元的三層引擎處理。一般來說,三層引擎會有兩個表,一個是主機路由表,這個表是以IP地址為索引的,裡面存放目的IP地址、下一跳MAC地址、埠號等信息。若找到一條匹配表項,就會在對報文進行一些操作(例如目的MAC與源MAC替換、TTL減1等)之後將報文從表中指定的埠轉發出去。若主機路由表中沒有找到匹配條目,則會繼續查找另一個表――網段路由表。這個表存放網段地址、下一跳MAC地址、埠號等信息。一般來說這個表的條目要少得多,但覆蓋的范圍很大,只要設置得當,基本上可以保證大部分進入交換機的報文都走硬體轉發,這樣不僅大大提高轉發速度,同時也減輕了CPU的負荷。若查找網段路由表也沒有找到匹配表項,則交換晶元會把包送給CPU處理,進行軟路由。由於站點B屬於交換機的直連網段之一,CPU收到這個IP報文以後,會直接以B的IP為索引檢查ARP緩存,若沒有站點B的MAC地址,則根據路由信息向B站廣播一個ARP請求,B站得到此ARP請求後向交換機回復其MAC地址,CPU在收到這個ARP回復報文的同時,同樣可以通過軟體把站點B的IP地址、MAC地址、進入交換機的埠號等信息設置到交換晶元的三層硬體表項中,然後把由站點A發來的IP報文轉發給站點B,這樣就完成了站點A到站點B的第一次單向通信。由於晶元內部的三層引擎中已經保存站點A、B的路由信息,以後站點A、B之間進行通信或其它網段的站點想要與A、B進行通信,交換晶元則會直接把包從三層硬體表項中指定的埠轉發出去,而不必再把包交給CPU處理。這種通過「一次路由,多次交換」的方式,大大提高了轉發速度。需要說明的是,三層引擎中的路由表項大都是通過軟體設置的。至於何時設置、怎麼設置並不存在一個固定的標准,我們在此也不詳細討論。一個單波IP報文從進入三層交換機到轉發出去一般來說走以下流程:
通過以上流程我們可以了解報文在交換機中的執行過程,同時我們也可以清楚的看出三層交換機是如何充分把傳統交換機和路由器的優勢有機的結合在一起。
在實際應用的網路環境中,對於跨網段通信的需求不斷提高,過去的網路在一般情況下按「80/20分配」規則,即只有20%的流量是通過骨幹路由器與中央伺服器或企業網的其他部分通信,而80%的網路流量主要仍集中在不同的部門子網內。而今天,這個比例已經提高到了50%,甚至80%(倒二八,20/80),這是因為今天的網路正在經歷著諸多應用的集合影響。網路應用已經超越了組件和電子信函,新型應用已經如此迅速和深刻地沖擊著網路,比如,任何人通過任何一個瀏覽器便可進行訪問設定的網頁,支持諸如銷售、服務和財務之類商業功能的數據倉庫。這種變化對傳統路由器產生了直接的沖擊。因為傳統的路由器更注重對多種介質類型和多種傳輸速度的支持,而目前數據緩沖和轉換能力比線速吞吐能力和低時延更為重要。處於網路核心位置的路由器的高費用、低性能使其成為網路的瓶頸,但由於網路間互連的需求,它又是不可缺少的。雖然也開發了高速路由器,但是由於其成本太高,所以僅用於Internet主幹部分。三層交換機將二層交換機和三層路由器兩者的優勢有機而智能化的結合在一起,在各個層次上提供線速性能,從而解決了傳統路由器低速、復雜所造成的網路瓶頸問題。在沒有廣域網連接需求的場合,用於連接不同子網的傳統路由器正在以極快的速度被三層交換機所代替。
4.小結
三層交換從概念的提出到今天的普及應用,雖然只歷經了幾年的時間,但其在網路建設中的應用越來越廣泛,從最初骨幹層、中間的匯聚層一直滲透到邊緣的接入層。三層交換機以其速度快、性能好、價格低等眾多的優勢已經把路由器排擠到網路的「邊緣」。凡是沒有廣域網連接需求,同時又需要路由器的地方,都可以用三層交換機代替。隨著ASIC硬體晶元技術的發展和實際應用的推廣,三層交換的技術與產品會得到進一步發展。
I. 思科三層交換機3560的問題:VLAN(dhcp)的一個口不獲取IP地址(還有地址),求怎麼去緩存或增加地址池。
這種情況應該是你的DHCP地址池設置的地址范圍不能完全滿足你的所有主機一起開機時使用的情況。遇到這種情況,直接將你的地址池的地址段加大一點就可以了。
如果你是在3560上啟用的DHCP,只需要使用以下命令增加地址池范圍就可以:
ip dhcp excluded-address 192.168.0.1 192.168.0.10
!
ip dhcp pool test
network 192.168.0.0 255.255.255.0
default-router 192.168.0.1
如果是在伺服器上,那麼你就在伺服器上面增加地址范圍就可以!
J. 思科三層交換機3750清除所有配置命令
1、查看配置的命令display current-configuration,直接輸入簡化的命令dis cur 。
注意事項:
隨著通信業的發展以及國民經濟信息化的推進,網路交換機市場呈穩步上升態勢。它具有性價比高、高度靈活、相對簡單和易於實現等特點。