❶ Redis集群方案應該怎麼做
高可用的話 其他題主已經說了 可以用sentinel去做 比如通過sentinel做節點切換 並且通知一些協調服務(例如zookeeper) 告訴所有使用者切換節點之類的 很容易
至於 sharding 分兩類 一類是proxy 有一些成熟實現 比如codis、twemproxy 另一類就是在客戶端做
建議 把codis/FAQ_zh.md at master · wandoulabs/codis · GitHub 看完 然後管作者要一份演講的PPT 就能知道為啥不用其他的代理以及smart client了 codis唯一的瑕疵是 需要更改redis的源代碼(為了加入slot信息) 以及代理實現本身會有的問題 所以 如果集群規模不大的話 沒必要用proxy 做客戶端sharding即可
❷ 細說分布式redis
IT培訓>資料庫教程
細說分布式Redis架構設計和踩過的那些坑
作者:課課家教育2015-12-14 10:15:25
摘要:本文章主要分成五個步驟內容講解
Redis、RedisCluster和Codis;
我們更愛一致性;
Codis在生產環境中的使用的經驗和坑們;
對於分布式資料庫和分布式架構的一些看法;
Q & A環節。
Codis是一個分布式Redis解決方案,與官方的純P2P的模式不同,Codis採用的是Proxy-based的方案。今天我們介紹一下Codis及下一個大版本RebornDB的設計,同時會介紹一些Codis在實際應用場景中的tips。最後拋磚引玉,會介紹一下我對分布式存儲的一些觀點和看法,望各位首席們雅正。
細說分布式Redis架構設計和踩過的那些坑_redis 分布式_ redis 分布式鎖_分布式緩存redis
一、 Redis,RedisCluster和Codis
Redis:想必大家的架構中,Redis已經是一個必不可少的部件,豐富的數據結構和超高的性能以及簡單的協議,讓Redis能夠很好的作為資料庫的上游緩存層。但是我們會比較擔心Redis的單點問題,單點Redis容量大小總受限於內存,在業務對性能要求比較高的情況下,理想情況下我們希望所有的數據都能在內存裡面,不要打到資料庫上,所以很自然的就會尋求其他方案。 比如,SSD將內存換成了磁碟,以換取更大的容量。更自然的想法是將Redis變成一個可以水平擴展的分布式緩存服務,在Codis之前,業界只有Twemproxy,但是Twemproxy本身是一個靜態的分布式Redis方案,進行擴容/縮容時候對運維要求非常高,而且很難做到平滑的擴縮容。Codis的目標其實就是盡量兼容Twemproxy的基礎上,加上數據遷移的功能以實現擴容和縮容,最終替換Twemproxy。從豌豆莢最後上線的結果來看,最後完全替換了Twem,大概2T左右的內存集群。
Redis Cluster :與Codis同期發布正式版的官方cl
❸ 如何實現高可用的redis集群
基於以上,Redis集群方案顯得尤為重要。通常有3個途徑:官方Redis Cluster;通過Proxy分片;客戶端分片(Smart Client)。以上三種方案各有利弊。
Redis Cluster(官方):雖然正式版發布已經有一年多的時間,但還缺乏最佳實踐;對協議進行了較大修改,導致主流客戶端也並非都已支持,部分支持的客戶端也沒有經過大規模生產環境的驗證;無中心化設計使整個系統高度耦合,導致很難對業務進行無痛的升級。
Proxy:現在很多主流的Redis集群都會使用Proxy方式,例如早已開源的Codis。這種方案有很多優點,因為支持原聲redis協議,所以客戶端不需要升級,對業務比較友好。並且升級相對平滑,可以起多個Proxy後,逐個進行升級。但是缺點是,因為會多一次跳轉,平均會有30%左右的性能開銷。而且因為原生客戶端是無法一次綁定多個Proxy,連接的Proxy如果掛了還是需要人工參與。除非類似Smart Client一樣封裝原有客戶端,支持重連到其他Proxy,但這也就帶來了客戶端分片方式的一些缺點。並且雖然Proxy可以使用多個,並且可以動態增加proxy增加性能,但是所有客戶端都是共用所有proxy,那麼一些異常的服務有可能影響到其他服務。為每個服務獨立搭建proxy,也會給部署帶來額外的工作。
❹ redis能解決什麼問題
redis是內存資料庫,訪問速度非常快,所以能夠解決的也都是些緩存類型的問題,如下:
1、會話緩存(Session Cache)
2、全頁緩存(FPC)
3、隊列
4、排行榜/計數器
5、發布/訂閱
❺ codis集群搭建好後怎麼使用
codis-proxy : 是客戶端連接的Redis代理服務,codis-proxy
本身實現了Redis協議,表現得和一個原生的Redis沒什麼區別(就像Twemproxy),對於一個業務來說,可以部署多個codis-proxy,codis-proxy本身是沒狀態的。
codis-config
:是Codis的管理工具,支持包括,添加/刪除Redis節點,添加/刪除Proxy節點,發起數據遷移等操作,codis-config本身還自帶了一個http
server,會啟動一個dashboard,用戶可以直接在瀏覽器上觀察Codis集群的狀態。
codis-server:是Codis項目維護的一個Redis分支,基於2.8.13開發,加入了slot的支持和原子的數據遷移指令,Codis上層的codis-proxy和codis-config只能和這個版本的Redis交互才能正常運行。
ZooKeeper :用來存放數據路由表和codis-proxy節點的元信息,codis-config發起的命令都會通過ZooKeeper同步到各個存活的codis-proxy
❻ codis集群中怎麼使用redis
Dynomite是NetFlix對亞馬遜分布式存儲引擎Dynamo的一個開源通用實現,使用C/C++語言編寫、以代理的方式實現的Redis緩存集群方案。
Dynomite不僅能夠將基於內存的Redis和Memcached打造成分布式資料庫,還支持持久化的MySQL、BerkeleyDB、LevelDB等資料庫,並具有簡單、高效、支持跨數據中心的數據復制等優點。
❼ 面試問題redis有哪些集群方案
P2P模式,無中心化
把key分成16384個slot
每個實例負責一部分slot
客戶端請求若不在連接的實例,該實例會轉發給對應的實例。
通過Gossip協議同步節點信息
優點:
- 組件all-in-box,部署簡單,節約機器資源
- 性能比proxy模式好
- 自動故障轉移、Slot遷移中數據可用
- 官方原生集群方案,更新與支持有保障
缺點:
- 架構比較新,最佳實踐較少
- 多鍵操作支持有限(驅動可以曲線救國)
- 為了性能提升,客戶端需要緩存路由表信息
- 節點發現、reshard操作不夠自動化
❽ 如何用Python一門語言通吃高性能並發,GPU計算和深度學習
第一個就是並發本身所帶來的開銷即新開處理線程、關閉處理線程、多個處理線程時間片輪轉所帶來的開銷。
實際上對於一些邏輯不那麼復雜的場景來說這些開銷甚至比真正的處理邏輯部分代碼的開銷更大。所以我們決定採用基於協程的並發方式,即服務進程只有一個(單cpu)所有的請求數據都由這個服務進程內部來維護,同時服務進程自行調度不同請求的處理順序,這樣避免了傳統多線程並發方式新建、銷毀以及系統調度處理線程的開銷。基於這樣的考慮我們選擇了基於Tornado框架實現api服務的開發。Tornado的實現非常簡潔明了,使用python的生成器作為協程,利用IOLoop實現了調度隊列。
第二個問題是資料庫的性能,這里說的資料庫包括MongoDB和Redis,我這里分開講。
先講MongoDB的問題,MongoDB主要存儲不同的用戶對於驗證的不同設置,比如該顯示什麼樣的圖片。
一開始每次驗證請求都會查詢MongoDB,當時我們的MongoDB是純內存的,同時三台機器組成一個復制集,這樣的組合大概能穩定承載八九千的qps,後來隨著我們驗證量越來越大,這個承載能力逐漸就成為了我們的瓶頸。
為了徹底搞定這個問題,我們提出了最極端的解決方案,乾脆直接把資料庫中的數據完全緩存到服務進程里定期批量更新,這樣查詢的開銷將大大降低。但是因為我們用的是Python,由於GIL的存在,在8核伺服器上會fork出來8個服務進程,進程之間不像線程那麼方便,所以我們基於mmap自己寫了一套夥伴演算法構建了一個跨進程共享緩存。自從這套緩存上線之後,Mongodb的負載幾乎變成了零。
說完了MongoDB再說Redis的問題,Redis代碼簡潔、數據結構豐富、性能強大,唯一的問題是作為一個單進程程序,終究性能是有上限的。
雖然今年Redis發布了官方的集群版本,但是經過我們的測試,認為這套分布式方案的故障恢復時間不夠優秀並且運維成本較高。在Redis官方集群方案面世之前,開源世界有不少proxy方案,比如Twtter的TwemProxy和豌豆莢的Codis。這兩種方案測試完之後給我們的感覺TwemProxy運維還是比較麻煩,Codis使用起來讓人非常心曠神怡,無論是修改配置還是擴容都可以在配置頁面上完成,並且性能也還算不錯,但無奈當時Codis還有比較嚴重的BUG只能放棄之。
幾乎嘗試過各種方案之後,我們還是下決心自己實現一套分布式方案,目的是高度貼合我們的需求並且運維成本要低、擴容要方便、故障切換要快最重要的是數據冗餘一定要做好。
基於上面的考慮,我們確定基於客戶端的分布式方案,通過zookeeper來同步狀態保證高可用。具體來說,我們修改Redis源碼,使其向zookeeper注冊,客戶端由zookeeper上獲取Redis伺服器集群信息並根據統一的一致性哈希演算法來計算數據應該存儲在哪台Redis上,並在哈希環的下一台Redis上寫入一份冗餘數據,當讀取原始數據失敗時可以立即嘗試讀取冗餘數據而不會造成服務中斷。
❾ codis 中redis-server 數據怎麼主從同步
codis的開發者明確提出codis不負責維護Redis的主從關系,在codis裡面的master和slave只是概念上的:proxy會將請求打到「master」上,master掛了codis-ha會將某一個「slave」提升成master。而真正的主從復制,還是需要在啟動底層的Redis時手動的配置。
❿ 如何實現高可用的 redis 集群
Redis 因具有豐富的數據結構和超高的性能以及簡單的協議,使其能夠很好的作為資料庫的上游緩存層。但在大規模的 Redis 使用過程中,會受限於多個方面:單機內存有限、帶寬壓力、單點問題、不能動態擴容等。
基於以上, Redis 集群方案顯得尤為重要。通常有 3 個途徑:官方 Redis Cluster ;通過 Proxy 分片;客戶端分片 (Smart Client) 。以上三種方案各有利弊。
Redis Cluster( 官方 ) :雖然正式版發布已經有一年多的時間,但還缺乏最佳實踐;對協議進行了較大修改,導致主流客戶端也並非都已支持,部分支持的客戶端也沒有經過大規模生產環境的驗證;無中心化設計使整個系統高度耦合,導致很難對業務進行無痛的升級。
Proxy :現在很多主流的 Redis 集群都會使用 Proxy 方式,例如早已開源的 Codis 。這種方案有很多優點,因為支持原聲 redis 協議,所以客戶端不需要升級,對業務比較友好。並且升級相對平滑,可以起多個 Proxy 後,逐個進行升級。但是缺點是,因為會多一次跳轉,平均會有 30% 左右的性能開銷。而且因為原生客戶端是無法一次綁定多個 Proxy ,連接的 Proxy 如果掛了還是需要人工參與。除非類似 Smart Client 一樣封裝原有客戶端,支持重連到其他 Proxy ,但這也就帶來了客戶端分片方式的一些缺點。並且雖然 Proxy 可以使用多個,並且可以動態增加 proxy 增加性能,但是所有客戶端都是共用所有 proxy ,那麼一些異常的服務有可能影響到其他服務。為每個服務獨立搭建 proxy ,也會給部署帶來額外的工作。
而我們選擇了第三種方案,客戶端分片 (Smart Client) 。客戶端分片相比 Proxy 擁有更好的性能,及更低的延遲。當然也有缺點,就是升級需要重啟客戶端,而且我們需要維護多個語言的版本,但我們更愛高性能。
下面我們來介紹一下我們的Redis集群:
概貌:
如圖0所示,
我們的 Redis 集群一共由四個角色組成:
Zookeeper :保存所有 redis 集群的實例地址, redis 實例按照約定在特定路徑寫入自身地址,客戶端根據這個約定查找 redis 實例地址,進行讀寫。
Redis 實例:我們修改了 redis 源碼,當 redis 啟動或主從切換時,按照約定自動把地址寫到 zookeeper 特定路徑上。
Sentinel : redis 自帶的主從切換工具,我們通過 sentinel 實現集群高可用。
客戶端( Smart Client ):客戶端通過約定查找 redis 實例在 ZooKeeper 中寫入的地址。並且根據集群的 group 數,進行一致性哈希計算,確定 key 唯一落入的 group ,隨後對這個 group 的主庫進行操作。客戶端會在Z ooKeeper 設置監視,當某個 group 的主庫發生變化時,Z ooKeeper 會主動通知客戶端,客戶端會更新對應 group 的最新主庫。
我們的Redis 集群是以業務為單位進行劃分的,不同業務使用不同集群(即業務和集群是一對一關系)。一個 Redis 集群會由多個 group 組成 ( 一個 group 由一個主從對 redis 實例組成 ) 。即 group 越多,可以部署在更多的機器上,可利用的內存、帶寬也會更多。在圖0中,這個業務使用的 redis 集群由 2 個 group 組成,每個 group 由一對主從實例組成。
Failover
如圖1所示,
當 redis 啟動時,會 把自己的 IP:Port 寫入到 ZooKeeper 中。其中的 主實例模式啟動時會在 /redis/ 業務名 / 組名 永久節點寫入自己的 IP:Port (如果節點不存在則創建)。由 主模式 變成 從模式 時,會創建 /redis/ 業務名 / 組名 /slaves/ip:port 臨時節 點,並寫入自己的 IP:Port (如果相同節點已經存在,則先刪除,再創建)。而從實例 模式 啟動時會創建 /redis/ 業務名 / 組名 /slaves/ip:port 臨時節點,並寫入自己的 ip:port (如果相同節點已經存在,則先刪除,再創建)。由 從模式 變成 主模式 時,先刪除 /redis/ 業務名 / 組名 /slaves/ip:port 臨時節點,並在 /redis/ 業務名 / 組名 永久節點寫入自己的 IP:Port 。
ZooKeeper 會一直保存當前有效的 主從實例 IP:Port 信息。至於主從自動切換過程,使用 redis 自帶的 sentinel 實現,現設置為超過 30s 主 server 無響應,則由 sentinel 進行主從實例的切換,切換後就會觸發以主、從實例通過以上提到的一系列動作,從而完成最終的切換。
而客戶端側通過給定業務名下的所有 groupName 進行一致性哈希計算,確定 key 落入哪個組。 客戶端啟動時,會從 ZooKeeper 獲取指定業務名下所有 group 的 主從 IP:Port ,並在 ZooKeeper 中設置監視(監視的作用是當 ZooKeeper 的節點發生變化時,會主動通知客戶端)。若客戶端從 Zookeeper 收到節點變化通知,會重新獲取最新的 主從 I:Port ,並重新設置監視( ZooKeeper 監視是一次性的)。通過此方法,客戶端可以實時獲知當前可訪問最新的 主從 IP:Port 信息。
因為我們的所有 redis 實例信息都按照約定保存在 ZooKeeper 上,所以不需要針對每個實例部署監控,我們編寫了一個可以自動通過 ZooKeeper 獲取所有 redis 實例信息,並且監控 cpu 、 qps 、內存、主從延遲、主從切換、連接數等的工具。
發展:
現在 redis 集群在某些業務內存需求超過預期很多後,無法通過動態擴容進行擴展。所以我們正在做動態擴容的支持。原先的客戶端我們是通過一致性哈希進行 key 的
路由策略,但這種方式在動態擴容時會略顯復雜,所以我們決定採用實現起來相對簡單的預分片方式。一致性哈希的好處是可以無限擴容,而預分片則不是。預分片
時我們會在初始化階段指定一個集群的所有分片數量,這個數量一旦指定就不能再做改變,這個預分片數量就是後續可以擴容到最大的 redis 實例數。假設預分片 128 個 slot ,每個實例 10G 也可以達到 TB 級別的集群,對於未來數據增長很大的集群我們可以預分片 1024 ,基本可以滿足所有大容量內存需求了。
原先我們的 redis 集群有四種角色, Smart Client, redis , sentinel , ZooKeeper 。為了支持動態擴容,我們增加了一個角色, redis_cluster_manager (以下簡稱 manager ),用於管理 redis 集群。主要工作是初始化集群(即預分片),增加實例後負責修改Z ooKeeper 狀態,待客戶端做好准備後遷移數據到新增實例上。為了盡量減少數據遷移期間對現性能帶來的影響,我們每次只會遷移一個分片的數據,待遷移完成,再進行下一個分片的遷移。
如圖2所示
相比原先的方案,多了 slots 、M anager Lock 、 clients 、M igrating Clients 節點。
Slots: 所有分片會把自身信息寫入到 slots 節點下面。 Manager 在初始化集群時,根據設置的分片數,以及集群下的 group 數,進行預分片操作,把所有分片均勻分配給已有 group 。分片的信息由一個 json 串組成,記錄有分片的狀態 (stats) ,當前擁有此分片的 group(src) ,需要遷移到的 group(dst) 。分片的狀態一共有三種: online 、 pre_migrate 、 migrating 。
Online 指這個分片處於正常狀態,這時 dst 是空值,客戶端根據 src 的 group 進行讀寫。
Pre_migrate 是指這個分片被 manager 標記為需要遷移,此時 dst 仍然為空, manager 在等所有 client 都已經准備就緒,因為 ZooKeeper 回掉所有客戶端有時間差,所以如果某些 client 沒有準備就緒的時候 manager 進行了數據遷移,那麼就會有數據丟失。
Migrating 是 manager 確認了所有客戶端都已經做好遷移准備後,在 dst 寫入此分片需要遷移的目標 group 。待遷移完成,會在 src 寫入目標 group_name , dst 設為空, stats 設為 online 。
Manager Lock: 因為我們是每次只允許遷移一個 slot ,所以不允許超過一個 manager 操作一個集群。所以 manager 在操作集群前,會在M anager Lock 下注冊臨時節點,代表這個集群已經有 manager 在操作了,這樣其他 manager 想要操作這個集群時就會自動退出。
Clients 和M igrating Clients 是為了讓 manager 知道客戶端是否已經准備就緒的節點。客戶端通過 uid 代表自己,格式是 客戶端語言 _ 主機名 _pid 。當集群沒有進行遷移,即所有分片都是 online 的時候,客戶端會在 clients 下創建 uid 的臨時節點。
當某個 slot 從 online 變成 pre_migrate 後,客戶端會刪除 clients 下的 uid 臨時節點,然後在M igrating Clients 創建 uid 臨時節點。注意,因為需要保證數據不丟失,從 pre_migrate 到 migrating 期間,這個 slot 是被鎖定的,即所有對這個 slot 的讀寫都會被阻塞。所以 mananger 會最多等待 10s ,確認所有客戶端都已經切換到准備就緒狀態,如果發現某個客戶端一直未准備就緒,那麼 mananger 會放棄此次遷移,把 slot 狀態由 pre_migrate 改為 online 。如果客戶端發現 slot 狀態由 pre_migrate 變成 online 了,那麼會刪除 migrating_clients 下的 uid 節點,在 clients 下重新創建 uid 節點。還需要注意的一點是,有可能一個客戶剛啟動,並且正在往 clients 下創建 uid 節點,但是因為網路延遲還沒創建完成,導致 manager 未確認到這個 client 是否准備就緒,所以 mananger 把 slot 改為 pre_migrate 後會等待 1s 再確認所有客戶端是否准備就緒。
如果 Manager 看到 clients 下已經沒有客戶端的話(都已經准備就緒),會把 slot 狀態改為 migrating 。 Slot 變成 migrating 後,鎖定也隨之解除, manager 會遍歷 src group 的數據,把對應 slot 的數據遷移到 dst group 里。客戶端在 migrating 期間如果有讀寫 migrating slot 的 key ,那麼客戶端會先把這個 key 從 src group 遷移到 dst group ,然後再做讀寫操作。即這期間客戶端性能會有所下降。這也是為什麼每次只遷移一個 slot 的原因。這樣即使只有 128 個分片的集群,在遷移期間受到性能影響的 key 也只有 1/128 ,是可以接受的。
Manager 發現已經把 slot 已經遷移完畢了,會在 src 寫入目標 group_name , dst 設為空, stats 設為 online 。客戶端也刪除 migrating_clients 下的 uid ,在 clients 下創建 uid 節點。