當前位置:首頁 » 硬碟大全 » cpu一級緩存需要人工干預
擴展閱讀
webinf下怎麼引入js 2023-08-31 21:54:13
堡壘機怎麼打開web 2023-08-31 21:54:11

cpu一級緩存需要人工干預

發布時間: 2022-05-08 23:46:46

『壹』 CPU與內存在什麼情況下直接交換信息

交換(對換)的基本思想是,把處於等待狀態(或在CPU調度原則下被剝奪運行權利) 的程序從內存移到輔存,把內存空間騰出來,這一過程又叫換出;把准備好競爭CPU運行的程序從輔存移到內存,這一過程又稱為換入
有一個CPU釆用時間片輪轉調度演算法的多道程序環境。時間片到,內存管理器將剛剛執行過的進程換出,將另一進程換入到剛剛釋放的內存空間中。同時,CPU調度器可以將時間片分配給其他已在內存中的進程。每個進程用完時間片都與另一進程交換。理想情況下,內存管理器的交換過程速度足夠快,總有進程在內存中可以執行。

『貳』 CPU的一級 二級 三級緩存問題

CPU緩存(Cache Memory)是位於CPU與內存之間的臨時存儲器,它的容量比內存小的多但是交換速度卻比內存要快得多。緩存的出現主要是為了解決CPU運算速度與內存讀寫速度不匹配的矛盾,因為CPU運算速度要比內存讀寫速度快很多,這樣會使CPU花費很長時間等待數據到來或把數據寫入內存。在緩存中的數據是內存中的一小部分,但這一小部分是短時間內CPU即將訪問的,當CPU調用大量數據時,就可避開內存直接從緩存中調用,從而加快讀取速度。由此可見,在CPU中加入緩存是一種高效的解決方案,這樣整個內存儲器(緩存+內存)就變成了既有緩存的高速度,又有內存的大容量的存儲系統了。緩存對CPU的性能影響很大,主要是因為CPU的數據交換順序和CPU與緩存間的帶寬引起的。 緩存的工作原理是當CPU要讀取一個數據時,首先從緩存中查找,找到就立即讀取並送給CPU處理;沒有找到,就用相對慢的速度從內存中讀取並送給CPU處理,同時把這個數據所在的數據塊調入緩存中,可以使得以後對整塊數據的讀取都從緩存中進行,不必再調用內存。正是這樣的讀取機制使CPU讀取緩存的命中率非常高(大多數CPU可達90%左右),也就是說CPU下一次要讀取的數據90%都在緩存中,只有大約10%需要從內存讀取。這大大節省了CPU直接讀取內存的時間,也使CPU讀取數據時基本無需等待。總的來說,CPU讀取數據的順序是先緩存後內存。 緩存基本上都是採用SRAM存儲器,SRAM是英文Static RAM的縮寫,它是一種具有靜態存取功能的存儲器,不需要刷新電路即能保存它內部存儲的數據。不像DRAM內存那樣需要刷新電路,每隔一段時間,固定要對DRAM刷新充電一次,否則內部的數據即會消失,因此SRAM具有較高的性能,但是SRAM也有它的缺點,即它的集成度較低,相同容量的DRAM內存可以設計為較小的體積,但是SRAM卻需要很大的體積,這也是不能將緩存容量做得太大的重要原因。它的特點歸納如下:優點是節能、速度快、不必配合內存刷新電路、可提高整體的工作效率,缺點是集成度低、相同的容量體積較大、而且價格較高,只能少量用於關鍵性系統以提高效率。按照數據讀取順序和與CPU結合的緊密程度,CPU緩存可以分為一級緩存,二級緩存,部分高端CPU還具有三級緩存,每一級緩存中所儲存的全部數據都是下一級緩存的一部分,這三種緩存的技術難度和製造成本是相對遞減的,所以其容量也是相對遞增的。當CPU要讀取一個數據時,首先從一級緩存中查找,沒有找到再從二級緩存中查找,還是沒有就從三級緩存或內存中查找。一般來說,每級緩存的命中率大概都在80%左右,也就是說全部數據量的80%都可以在一級緩存中找到,只剩下20%的總數據量才需要從二級緩存、三級緩存或內存中讀取,由此可見一級緩存是整個CPU緩存架構中最為重要的部分。
編輯本段一級緩存
一級緩存(Level 1 Cache)簡稱L1 Cache,位於CPU內核的旁邊,是與CPU結合最為緊密的CPU緩存,也是歷史上最早出現的CPU緩存。由於一級緩存的技術難度和製造成本最高,提高容量所帶來的技術難度增加和成本增加非常大,所帶來的性能提升卻不明顯,性價比很低,而且現有的一級緩存的命中率已經很高,所以一級緩存是所有緩存中容量最小的,比二級緩存要小得多。 一級緩存可以分為一級數據緩存(Data Cache,D-Cache)和一級指令緩存(Instruction Cache,I-Cache)。二者分別用來存放數據以及對執行這些數據的指令進行即時解碼,而且兩者可以同時被CPU訪問,減少了爭用Cache所造成的沖突,提高了處理器效能。大多數CPU的一級數據緩存和一級指令緩存具有相同的容量,例如AMD的Athlon XP就具有64KB的一級數據緩存和64KB的一級指令緩存,其一級緩存就以64KB+64KB來表示,其餘的CPU的一級緩存表示方法以此類推。 Intel的採用NetBurst架構的CPU(最典型的就是Pentium 4)的一級緩存有點特殊,使用了新增加的一種一級追蹤緩存(Execution Trace Cache,T-Cache或ETC)來替代一級指令緩存,容量為12KμOps,表示能存儲12K條即 12000條解碼後的微指令。一級追蹤緩存與一級指令緩存的運行機制是不相同的,一級指令緩存只是對指令作即時的解碼而並不會儲存這些指令,而一級追蹤緩存同樣會將一些指令作解碼,這些指令稱為微指令(micro-ops),而這些微指令能儲存在一級追蹤緩存之內,無需每一次都作出解碼的程序,因此一級追蹤緩存能有效地增加在高工作頻率下對指令的解碼能力,而μOps就是micro-ops,也就是微型操作的意思。它以很高的速度將μops提供給處理器核心。Intel NetBurst微型架構使用執行跟蹤緩存,將解碼器從執行循環中分離出來。這個跟蹤緩存以很高的帶寬將uops提供給核心,從本質上適於充分利用軟體中的指令級並行機制。Intel並沒有公布一級追蹤緩存的實際容量,只知道一級追蹤緩存能儲存12000條微指令(micro-ops)。所以,不能簡單地用微指令的數目來比較指令緩存的大小。實際上,單核心的NetBurst架構CPU使用8Kμops的緩存已經基本上夠用了,多出的4kμops可以大大提高緩存命中率。而要使用超線程技術的話,12KμOps就會有些不夠用,這就是為什麼有時候Intel處理器在使用超線程技術時會導致性能下降的重要原因。例如Northwood核心的一級緩存為8KB+12KμOps,就表示其一級數據緩存為8KB,一級追蹤緩存為12KμOps;而Prescott核心的一級緩存為16KB+12KμOps,就表示其一級數據緩存為16KB,一級追蹤緩存為12KμOps。在這里12KμOps絕對不等於12KB,單位都不同,一個是μOps,一個是Byte(位元組),而且二者的運行機制完全不同。所以那些把Intel的CPU一級緩存簡單相加,例如把Northwood核心說成是20KB一級緩存,把Prescott核心說成是28KB一級緩存,並且據此認為Intel處理器的一級緩存容量遠遠低於AMD處理器128KB的一級緩存容量的看法是完全錯誤的,二者不具有可比性。在架構有一定區別的CPU對比中,很多緩存已經難以找到對應的東西,即使類似名稱的緩存在設計思路和功能定義上也有區別了,此時不能用簡單的算術加法來進行對比;而在架構極為近似的CPU對比中,分別對比各種功能緩存大小才有一定的意義。
編輯本段二級緩存
二級緩存(Level2 cache),它是處理器內部的一些緩沖存儲器,其作用跟內存一樣。上溯到上個世紀80年代,由於處理器的運行速度越來越快,慢慢地,處理器需要從內存中讀取數據的速度需求就越來越高了。然而內存的速度提升速度卻很緩慢,而能高速讀寫數據的內存價格又非常高昂,不能大量採用。從性能價格比的角度出發,英特爾等處理器設計生產公司想到一個辦法,就是用少量的高速內存和大量的低速內存結合使用,共同為處理器提供數據。這樣就兼顧了性能和使用成本的最優。而那些高速的內存因為是處於cpu和內存之間的位置,又是臨時存放數據的地方,所以就叫做緩沖存儲器了,簡稱「緩存」。它的作用就像倉庫中臨時堆放貨物的地方一樣,貨物從運輸車輛上放下時臨時堆放在緩存區中,然後再搬到內部存儲區中長時間存放。貨物在這段區域中存放的時間很短,就是一個臨時貨場。 最初緩存只有一級,後來處理器速度又提升了,一級緩存不夠用了,於是就添加了二級緩存。二級緩存是比一級緩存速度更慢,容量更大的內存,主要就是做一級緩存和內存之間數據臨時交換的地方用。為了適應速度更快的處理器p4ee,已經出現了三級緩存了,它的容量更大,速度相對二級緩存也要慢一些,但是比內存可快多了。 緩存的出現使得cpu處理器的運行效率得到了大幅度的提升,這個區域中存放的都是cpu頻繁要使用的數據,所以緩存越大處理器效率就越高,同時由於緩存的物理結構比內存復雜很多,所以其成本也很高。 大量使用二級緩存帶來的結果是處理器運行效率的提升和成本價格的大幅度不等比提升。舉個例子,伺服器上用的至強處理器和普通的p4處理器其內核基本上是一樣的,就是二級緩存不同。至強的二級緩存是2mb~16mb,p4的二級緩存是512kb,於是最便宜的至強也比最貴的p4貴,原因就在二級緩存不同。即l2 cache。由於l1級高速緩存容量的限制,為了再次提高cpu的運算速度,在cpu外部放置一高速存儲器,即二級緩存。工作主頻比較靈活,可與cpu同頻,也可不同。cpu在讀取數據時,先在l1中尋找,再從l2尋找,然後是內存,在後是外存儲器。所以l2對系統的影響也不容忽視。 最早先的cpu緩存是個整體的,而且容量很低,英特爾公司從pentium時代開始把緩存進行了分類。當時集成在cpu內核中的緩存已不足以滿足cpu的需求,而製造工藝上的限制又不能大幅度提高緩存的容量。因此出現了集成在與cpu同一塊電路板上或主板上的緩存,此時就把cpu內核集成的緩存稱為一級緩存,而外部的稱為二級緩存。一級緩存中還分數據緩存(data cache,d-cache)和指令緩存(instruction cache,i-cache)。二者分別用來存放數據和執行這些數據的指令,而且兩者可以同時被cpu訪問,減少了爭用cache所造成的沖突,提高了處理器效能。英特爾公司在推出pentium 4處理器時,用新增的一種一級追蹤緩存替代指令緩存,容量為12kμops,表示能存儲12k條微指令。隨著cpu製造工藝的發展,二級緩存也能輕易的集成在cpu內核中,容量也在逐年提升。再用集成在cpu內部與否來定義一、二級緩存,已不確切。而且隨著二級緩存被集成入cpu內核中,以往二級緩存與cpu大差距分頻的情況也被改變,此時其以相同於主頻的速度工作,可以為cpu提供更高的傳輸速度。
編輯本段三級緩存
L3 Cache(三級緩存),分為兩種,早期的是外置,現在的都是內置的。而它的實際作用即是,L3緩存的應用可以進一步降低內存延遲,同時提升大數據量計算時處理器的性能。降低內存延遲和提升大數據量計算能力對游戲都很有幫助。而在伺服器領域增加L3緩存在性能方面仍然有顯著的提升。比方具有較大L3緩存的配置利用物理內存會更有效,故它比較慢的磁碟I/O子系統可以處理更多的數據請求。具有較大L3緩存的處理器提供更有效的文件系統緩存行為及較短消息和處理器隊列長度。 其實最早的L3緩存被應用在AMD發布的K6-III處理器上,當時的L3緩存受限於製造工藝,並沒有被集成進晶元內部,而是集成在主板上。在只能夠和系統匯流排頻率同步的L3緩存同主內存其實差不了多少。後來使用L3緩存的是英特爾為伺服器市場所推出的Itanium處理器。接著就是P4EE和至強MP。Intel還打算推出一款9MB L3緩存的Itanium2處理器,和以後24MB L3緩存的雙核心Itanium2處理器。 但基本上L3緩存對處理器的性能提高顯得不是很重要,比方配備1MB L3緩存的Xeon MP處理器卻仍然不是Opteron的對手,由此可見前端匯流排的增加,要比緩存增加帶來更有效的性能提升。

『叄』 CPU的一級緩存和二級緩存有什麼用

二級緩存就是一級緩存的緩沖器,因為一級緩存製造成本較高,因此它的容量有限,二級緩存的作用就是存儲那些CPU處理時需要用到、一級緩存又無法存儲的數據

『肆』 CPU的一級緩存和二級緩存主要是拿來幹嘛的

一級緩存
即L1
Cache。集成在CPU內部中,用於CPU在處理數據過程中數據的暫時保存。由於緩存指令和數據與CPU同頻工作,L1級高速緩存緩存的容量越大,存儲信息越多,可減少CPU與內存之間的數據交換次數,提高CPU的運算效率。但因高速緩沖存儲器均由靜態RAM組成,結構較復雜,在有限的CPU晶元面積上,L1級高速緩存的容量不可能做得太大。
二級緩存
即L2
Cache。由於L1級高速緩存容量的限制,為了再次提高CPU的運算速度,在CPU外部放置一高速存儲器,即二級緩存。工作主頻比較靈活,可與CPU同頻,也可不同。CPU在讀取數據時,先在L1中尋找,再從L2尋找,然後是內存,在後是外存儲器。所以L2對系統的影響也不容忽視

二級緩存也決定CPU的速度.如果沒有二級緩存.機器就會像蝸牛一樣慢.

『伍』 關於cpu緩存工作原理問題,一級緩存,二級緩存,三級緩存。。。

緩存(位於cpu和內存之間的臨時存儲器,工作效率很高):分為一級、二級和三級緩存。通俗的講,就是cpu在工作時,需要重復讀取一些數據,如果都從內存中讀取的話,所用時間還是會有些長,而緩存可以大幅度提高cpu訪問數據的能力,只有緩存里沒有cpu要找的數據時,cpu才會去找內存提取數據。
而每一級緩存所提供的容量都不相同,三級最大
這樣就提高了cpu工作的效率

『陸』 CPU的那些一級緩存,二級緩存,三級緩存是什麼意思

首先我們來簡單了解一下一級緩存。目前所有主流處理器大都具有一級緩存和二級緩存,少數高端處理器還集成了三級緩存。其中,一級緩存可分為一級指令緩存和一級數據緩存。一級指令緩存用於暫時存儲並向CPU遞送各類運算指令;一級數據緩存用於暫時存儲並向CPU遞送運算所需數據,這就是一級緩存的作用(如果大家對上述文字理解困難的話,可參照下圖所示)。 那麼,二級緩存的作用又是什麼呢?簡單地說,二級緩存就是一級緩存的緩沖器:一級緩存製造成本很高因此它的容量有限,二級緩存的作用就是存儲那些CPU處理時需要用到、一級緩存又無法存儲的數據。同樣道理,三級緩存和內存可以看作是二級緩存的緩沖器,它們的容量遞增,但單位製造成本卻遞減。需要注意的是,無論是二級緩存、三級緩存還是內存都不能存儲處理器操作的原始指令,這些指令只能存儲在CPU的一級指令緩存中,而餘下的二級緩存、三級緩存和內存僅用於存儲CPU所需數據。 根據工作原理的不同,目前主流處理器所採用的一級數據緩存又可以分為實數據讀寫緩存和數據代碼指令追蹤緩存2種,它們分別被AMD和Intel所採用。不同的一級數據緩存設計對於二級緩存容量的需求也各不相同,下面讓我們簡單了解一下這兩種一級數據緩存設計的不同之處。 一、AMD一級數據緩存設計 AMD採用的一級緩存設計屬於傳統的「實數據讀寫緩存」設計。基於該架構的一級數據緩存主要用於存儲CPU最先讀取的數據;而更多的讀取數據則分別存儲在二級緩存和系統內存當中。做個簡單的假設,假如處理器需要讀取「AMD ATHLON 64 3000+ IS GOOD」這一串數據(不記空格),那麼首先要被讀取的「AMDATHL」將被存儲在一級數據緩存中,而餘下的「ON643000+ISGOOD」則被分別存儲在二級緩存和系統內存當中(如下圖所示)。 需要注意的是,以上假設只是對AMD處理器一級數據緩存的一個抽象描述,一級數據緩存和二級緩存所能存儲的數據長度完全由緩存容量的大小決定,而絕非以上假設中的幾個位元組。「實數據讀寫緩存」的優點是數據讀取直接快速,但這也需要一級數據緩存具有一定的容量,增加了處理器的製造難度(一級數據緩存的單位製造成本較二級緩存高)。 二、Intel一級數據緩存設計 自P4時代開始,Intel開始採用全新的「數據代碼指令追蹤緩存」設計。基於這種架構的一級數據緩存不再存儲實際的數據,而是存儲這些數據在二級緩存中的指令代碼(即數據在二級緩存中存儲的起始地址)。假設處理器需要讀取「INTEL P4 IS GOOD」這一串數據(不記空格),那麼所有數據將被存儲在二級緩存中,而一級數據代碼指令追蹤緩存需要存儲的僅僅是上述數據的起始地址(如下圖所示)。 由於一級數據緩存不再存儲實際數據,因此「數據代碼指令追蹤緩存」設計能夠極大地降CPU對一級數據緩存容量的要求,降低處理器的生產難度。但這種設計的弊端在於數據讀取效率較「實數據讀寫緩存設計」低,而且對二級緩存容量的依賴性非常大。 在了解了一級緩存、二級緩存的大致作用及其分類以後,下面我們來回答以下硬體一菜鳥網友提出的問題。 從理論上講,二級緩存越大處理器的性能越好,但這並不是說二級緩存容量加倍就能夠處理器帶來成倍的性能增長。目前CPU處理的絕大部分數據的大小都在0-256KB之間,小部分數據的大小在256KB-512KB之間,只有極少數數據的大小超過512KB。所以只要處理器可用的一級、二級緩存容量達到256KB以上,那就能夠應付正常的應用;512KB容量的二級緩存已經足夠滿足絕大多數應用的需求。 這其中,對於採用「實數據讀寫緩存」設計的AMD Athlon 64、Sempron處理器而言,由於它們已經具備了64KB一級指令緩存和64KB一級數據緩存,只要處理器的二級緩存容量大於等於128KB就能夠存儲足夠的數據和指令,因此它們對二級緩存的依賴性並不大。這就是為什麼主頻同為1.8GHz的Socket 754 Sempron 3000+(128KB二級緩存)、Sempron 3100+(256KB二級緩存)以及Athlon 64 2800+(512KB二級緩存)在大多數評測中性能非常接近的主要原因。所以對於普通用戶而言754 Sempron 2600+是值得考慮的。 反觀Intel目前主推的P4、賽揚系列處理器,它們都採用了「數據代碼指令追蹤緩存」架構,其中Prescott內核的一級緩存中只包含了12KB一級指令緩存和16KB一級數據緩存,而Northwood內核更是只有12KB一級指令緩存和8KB一級數據緩存。所以P4、賽揚系列處理器對二級緩存的依賴性是非常大的,賽揚D 320(256KB二級緩存)與賽揚 2.4GHz(128KB二級緩存)性能上的巨大差距就很好地證明了這一點;而賽揚D和P4 E處理器之間的性能差距同樣十分明顯。 最後,如果您是狂熱的游戲發燒友或者從事多媒體製作的專業用戶,那麼具有1MB二級緩存的P4處理器和具有512KB/1MB二級緩存的Athlon 64處理器才是您理想的選擇。因為在高負荷的運算下,CPU的一級緩存和二級緩存近乎「爆滿」,在這個時候大容量的二級緩存能夠為處理器帶來5%-10%左右的性能提升,這對於那些要求苛刻的用戶來說是完全有必要的

『柒』 cpu中一級緩存是什麼

一級緩存都內置在CPU內部並與CPU同速運行,可以有效的提高CPU的運行效率。一級緩存越大,CPU的運行效率越高,但受到CPU內部結構的限制,一級緩存的容量都很小。 CPU緩存(Cache Memory)是位於CPU與內存之間的臨時存儲器,它的容量比內存小的多但是交換速度卻比內存要快得多。緩存的出現主要是為了解決CPU運算速度與內存讀寫速度不匹配的矛盾,因為CPU運算速度要比內存讀寫速度快很多,這樣會使CPU花費很長時間等待數據到來或把數據寫入內存。在緩存中的數據是內存中的一小部分,但這一小部分是短時間內CPU即將訪問的,當CPU調用大量數據時,就可避開內存直接從緩存中調用,從而加快讀取速度。由此可見,在CPU中加入緩存是一種高效的解決方案,這樣整個內存儲器(緩存+內存)就變成了既有緩存的高速度,又有內存的大容量的存儲系統了。緩存對CPU的性能影響很大,主要是因為CPU的數據交換順序和CPU與緩存間的帶寬引起的。 分類 一級緩存可以分為一級數據緩存(Data Cache,D-Cache)和一級指令緩存(Instruction Cache,I-Cache)。二者分別用來存放數據以及對執行這些數據的指令進行即時解碼,而且兩者可以同時被CPU訪問,減少了爭用Cache所造成的沖突,提高了處理器效能。目前大多數CPU的一級數據緩存和一級指令緩存具有相同的容量,例如AMD的Athlon XP就具有64KB的一級數據緩存和64KB的一級指令緩存,其一級緩存就以64KB+64KB來表示,其餘的CPU的一級緩存表示方法以此類推。

『捌』 關於CPU,所謂"一級,二級緩存"的簡單解釋。

緩存(Cache)
CPU進行處理的數據信息多是從內存中調取的,但CPU的運算速度要比內存快得多,為此在此傳輸過程中放置一存儲器,存儲CPU經常使用的數據和指令。這樣可以提高數據傳輸速度。可分一級緩存和二級緩存。
一級緩存
即L1 Cache。集成在CPU內部中,用於CPU在處理數據過程中數據的暫時保存。由於緩存指令和數據與CPU同頻工作,L1級高速緩存緩存的容量越大,存儲信息越多,可減少CPU與內存之間的數據交換次數,提高CPU的運算效率。但因高速緩沖存儲器均由靜態RAM組成,結構較復雜,在有限的CPU晶元面積上,L1級高速緩存的容量不可能做得太大。
二級緩存
即L2 Cache。由於L1級高速緩存容量的限制,為了再次提高CPU的運算速度,在CPU外部放置一高速存儲器,即二級緩存。工作主頻比較靈活,可與CPU同頻,也可不同。CPU在讀取數據時,先在L1中尋找,再從L2尋找,然後是內存,在後是外存儲器。所以L2對系統的影響也不容忽視。

『玖』 CPU的一級緩存是什麼。

高速緩存分為一級緩存(即L1 Cache)和二級緩存(即L2Cache)。CPU在運行時首先從一級緩存讀取數據,然後從二級緩存讀取數據,然後從內存和虛擬內存讀取數據,因此高速緩存的容量和速度直接影響到CPU的工作性能。 一級緩存都內置在CPU內部並與CPU同速運行,可以有效的提高CPU的運行效率。一級緩存越大,CPU的運行效率越高,但受到CPU內部結構的限制,一級緩存的容量都很小。 二級緩存對CPU運行效率的影響也很大,現在的二級緩存一般都集成在中,但有分為晶元內部和外部兩種,集成在晶元內部的二級緩存與CPU同頻率二級緩存(即全速二級緩存),而集成在晶元外部的二級緩存的運行頻率 是CPU的運行頻率的一半(即半速二級緩存),因此運行效率較低。 但是一級緩存和二級緩存的大,它究竟有多少好處呢?你得告訴我們經銷商,實際上你得用最普通的話跟他講。所以我們給他們打個比方,說這個就好比你開汽車的時候,後備箱是整個的一級緩存,假如說扶手裡面有一個小箱子,那是你的二級緩存。二級緩存大好在哪裡呢?就是你隨時開車的時候,隨時在裡面都可以取東西了。假如你二級緩存小的話,你還得把車停下來,到後備箱里取東西。
首先我們來簡單了解一下一級緩存。目前所有主流處理器大都具有一級緩存和二級緩存,少數高端處理器還集成了三級緩存。其中,一級緩存可分為一級指令緩存和一級數據緩存。一級指令緩存用於暫時存儲並向CPU遞送各類運算指令;一級數據緩存用於暫時存儲並向CPU遞送運算所需數據,這就是一級緩存的作用(如果大家對上述文字理解困難的話,可參照下圖所示)。
那麼,二級緩存的作用又是什麼呢?簡單地說,二級緩存就是一級緩存的緩沖器:一級緩存製造成本很高因此它的容量有限,二級緩存的作用就是存儲那些CPU處理時需要用到、一級緩存又無法存儲的數據。同樣道理,三級緩存和內存可以看作是二級緩存的緩沖器,它們的容量遞增,但單位製造成本卻遞減。需要注意的是,無論是二級緩存、三級緩存還是內存都不能存儲處理器操作的原始指令,這些指令只能存儲在CPU的一級指令緩存中,而餘下的二級緩存、三級緩存和內存僅用於存儲CPU所需數據。
根據工作原理的不同,目前主流處理器所採用的一級數據緩存又可以分為實數據讀寫緩存和數據代碼指令追蹤緩存2種,它們分別被AMD和Intel所採用。不同的一級數據緩存設計對於二級緩存容量的需求也各不相同,下面讓我們簡單了解一下這兩種一級數據緩存設計的不同之處。

『拾』 如何關閉cpu一級緩存

BIOS設置

「Main」

CPU L1&L2 Cache:這個選項是用於打開或者關閉CPU的一級、二級緩存,包括「Disabled」和「Enabled」兩個選項。這個選項用戶最好打開,即「Enabled」. 關閉就選「Disabled」