當前位置:首頁 » 硬碟大全 » 數據字典緩存需要注意什麼
擴展閱讀
webinf下怎麼引入js 2023-08-31 21:54:13
堡壘機怎麼打開web 2023-08-31 21:54:11

數據字典緩存需要注意什麼

發布時間: 2023-04-07 12:39:37

❶ 一般用戶可以修改數據字典嗎

一般用戶可以修改數據字典。

數據字典是一種通用的程序設計方法。可拿攜游以認為,不論什麼程序,隱碰都是為了處理一定的主體,這里的主體可能是人員、商品(超子)、網頁、介面、資料庫表、甚至需求分析等等。

數據字典注意:

一、把主體的屬性代碼化放入獨立的表中,不是和主體放在一起,主體中只保留屬性的代碼。這里屬性的數量是不變的,而屬性取值的數量可以是變化的。

二、用一個表來放結構相同的所有屬性信息,不同屬性的不同取值統一編碼,用「類型」來區別不同的屬性,主體中保留屬性代碼的列表。這樣主體所擁消銷有的屬性數量就是可變的了。

❷ 哪些因素影響了資料庫性能

網路寬頻,磁碟IO,查詢速度都會影響到資料庫的性能。

具體問題具體分析,舉例來說明為什麼磁碟IO成瓶頸資料庫的性能急速下降了。

為什麼當磁碟IO成瓶頸之後, 資料庫的性能不是達到飽和的平衡狀態,而是急劇下降。為什麼資料庫的性能有非常明顯的分界點,原因是什麼?

相信大部分做資料庫運維的朋友,都遇到這種情況。 資料庫在前一天性能表現的相當穩定,資料庫的響應時間也很正常,但就在今天,在業務人員反饋業務流量沒有任何上升的情況下,資料庫的變得不穩定了,有時候一個最簡單的insert操作, 需要幾十秒,但99%的insert卻又可以在幾毫秒完成,這又是為什麼了?

dba此時心中有無限的疑惑,到底是什麼原因呢? 磁碟IO性能變差了?還是業務運維人員反饋的流量壓根就不對? 還是資料庫內部出問題?昨天不是還好好的嗎?

當資料庫出現響應時間不穩定的時候,我們在操作系統上會看到磁碟的利用率會比較高,如果觀察仔細一點,還可以看到,存在一些讀的IO. 資料庫伺服器如果存在大量的寫IO,性能一般都是正常跟穩定的,但只要存在少量的讀IO,則性能開始出現抖動,存在大量的讀IO時(排除配備非常高速磁碟的機器),對於在線交易的資料庫系統來說,大概性能就雪崩了。為什麼操作系統上看到的磁碟讀IO跟寫IO所帶來的性能差距這么大呢?

如果親之前沒有注意到上述的現象,親對上述的結論也是懷疑。但請看下面的分解。

在寫這個文章之前,作者閱讀了大量跟的IO相關的代碼,如非同步IO線程的相關的,innodb_buffer池相關的,以及跟讀數據塊最相關的核心函數buf_page_get_gen函數以及其調用的相關子函數。為了將文章寫得通俗點,看起來不那麼累,因此不再一行一行的將代碼解析寫出來。

咱們先來提問題。buf_page_get_gen函數的作用是從Buffer bool裡面讀數據頁,可能存在以下幾種情況。

提問. 數據頁不在buffer bool 裡面該怎麼辦?

回答:去讀文件,將文件中的數據頁載入到buffer pool裡面。下面是函數buffer_read_page的函數,作用是將物理數據頁載入到buffer pool, 圖片中顯示

buffer_read_page函數棧的頂層是pread64(),調用了操作系統的讀函數。


通過解析buf_wait_for_read函數的下層函數,我們知道其實通過首先自旋加鎖pin的方式,超過設定的自旋次數之後,進入等待,等待IO完成被喚醒。這樣節省不停自旋pin時消耗的cpu,但需要付出被喚起時的開銷。

再繼續擴展問題: 如果會話線程A 經過物理IO將數據頁1001讀入buffer之後,他需要修改這個頁,而在會話線程A之後的其他的同樣需要訪問數據頁1001的會話線程,即使在數據頁1001被入讀buffer pool之後,將仍然處於等待中。因為在數據頁上讀取或者更新的時候,同樣需要上鎖,這樣才能保證數據頁並發讀取/更新的一致性。

由此可見,當一個高並發的系統,出現了熱點數據頁需要從磁碟上載入到buffer pool中時,造成的延遲,是難以想像的。因此排在等待熱點頁隊列最後的會話線程最後才得到需要的頁,響應時間也就越長,這就是造成了一個簡單的sql需要執行幾十秒的原因。

再回頭來看上面的問題,mysql資料庫出現性能下降時,可以看到操作系統有讀IO。 原因是,在資料庫對數據頁的更改,是在內存中的,然後通過檢查點線程進行非同步寫盤,這個非同步的寫操作是不堵塞執行sql的會話線程的。所以,即使看到操作系統上有大量的寫IO,資料庫的性能也是很平穩的。但當用戶線程需要查找的數據頁不在buffer pool中時,則會從磁碟上讀取,在一個熱點數據頁不是非常多的情況下,我們設置足夠大的innodb_buffer_pool的size, 基本可以緩存所有的數據頁,因此一般都不會出現缺頁的情況,也就是在操作系統上基本看不到讀的IO。 當出現讀的IO時,原因時在執行buf_read_page_low函數,從磁碟上讀取數據頁到buffer pool, 則資料庫的性能則開始下降,當出現大量的讀IO,資料庫的性能會非常差。

❸ 想做個 網站 ,求一段PHP編程代碼,PHP的MYSQL緩存怎麼實現 最好舉個例子。

//以下是緩存類:
<?php
class cache {
//緩存目錄
var $cacheRoot = "./cache/";
//緩存更新時間秒數,0為不緩存
var $cacheLimitTime = 0;
//緩存文件名
var $cacheFileName = "";
//緩存擴展名
var $cacheFileExt = "html";

/*
* 構造函數
* int $cacheLimitTime 緩存更新時間
*/
function cache( $cacheLimitTime ) {
if( intval( $cacheLimitTime ) )
$this->cacheLimitTime = $cacheLimitTime;
$this->cacheFileName = $this->getCacheFileName();
//echo $this->cacheFileName;
ob_start();
}

/*
* 檢查緩存文件是否在設置更新時間之內
* 返回:如果在更新時間之內則返迴文件內容,反之則返回失敗
*/
function cacheCheck(){
if( file_exists( $this->cacheFileName ) ) {
$cTime = $this->getFileCreateTime( $this->cacheFileName );
if( $cTime + $this->cacheLimitTime > time() ) {
echo file_get_contents( $this->cacheFileName );
ob_end_flush();
exit;
}
}
return false;
}

/*
* 緩存文件或者輸出靜態
* string $staticFileName 靜態文件名(含相對路徑)
*/
function caching( $staticFileName = "" ){
if( $this->cacheFileName ) {
$cacheContent = ob_get_contents();
//echo $cacheContent;
ob_end_flush();

if( $staticFileName ) {
$this->saveFile( $staticFileName, $cacheContent );
}

if( $this->cacheLimitTime )
$this->saveFile( $this->cacheFileName, $cacheContent );
}
}

/*
* 清除緩存文件
* string $fileName 指定文件名(含函數)或者all(全部)
* 返回:清除成功返回true,反之返回false
*/
function clearCache( $fileName = "all" ) {

if( $fileName != "all" ) {

$fileName = $this->cacheRoot . strtoupper(md5($fileName)).".".$this->cacheFileExt;
if( file_exists( $fileName ) ) {
//echo $fileName;
//die();
return @unlink( $fileName );
}else return false;
}
if ( is_dir( $this->cacheRoot ) ) {
if ( $dir = @opendir( $this->cacheRoot ) ) {
while ( $file = @readdir( $dir ) ) {
$check = is_dir( $file );
if ( !$check )
@unlink( $this->cacheRoot . $file );
}
@closedir( $dir );
return true;
}else{
return false;
}
}else{
return false;
}
}

/*
* 根據當前動態文件生成緩存文件名
*/
function getCacheFileName() {
return $this->cacheRoot . strtoupper(md5($_SERVER["REQUEST_URI"])).".".$this->cacheFileExt;
}

/*
* 緩存文件建立時間
* string $fileName 緩存文件名(含相對路徑)
* 返回:文件生成時間秒數,文件不存在返回0
*/
function getFileCreateTime( $fileName ) {
if( ! trim($fileName) ) return 0;

if( file_exists( $fileName ) ) {
return intval(filemtime( $fileName ));
}else return 0;
}

/*
* 保存文件
* string $fileName 文件名(含相對路徑)
* string $text文件內容
* 返回:成功返回ture,失敗返回false
*/
function saveFile($fileName, $text) {
if( ! $fileName || ! $text ) return false;

if( $this->makeDir( dirname( $fileName ) ) ) {
if( $fp = fopen( $fileName, "w" ) ) {
if( @fwrite( $fp, $text ) ) {
fclose($fp);
return true;
}else {
fclose($fp);
return false;
}
}
}
return false;
}

/*
* 連續建目錄
* string $dir 目錄字元串
* int $mode 許可權數字
* 返回:順利創建或者全部已建返回true,其它方式返回false
*/
function makeDir( $dir, $mode = "0777" ) {
if( ! $dir ) return 0;
$dir = str_replace( "\\", "/", $dir );

$mdir = "";
foreach( explode( "/", $dir ) as $val ) {
$mdir .= $val."/";
if( $val == ".." || $val == "." || trim( $val ) == "" ) continue;

if( ! file_exists( $mdir ) ) {
if(!@mkdir( $mdir, $mode )){
return false;
}
}
}
return true;
}
}

?>

//以下是調用方法:

$cache = new cache(3600);
$cache->cacheCheck();
//你的網頁內容
$cache->caching();

❹ SGA是什麼

是一組包含一個Oracle實例的數據和控制信息的共享內存結構。主要是用於存儲資料庫信息的內存區,該信息為資料庫進程所共享(PGA不能共享的)。它包含Oracle伺服器的數據和控制信息,它是在Oracle伺服器所駐留的計算機的實際內存中得以分配,如果實際內存不夠再往虛擬內存中寫。
SGA幾個很重要的特性:
1、SGA的構成--數據和控制信息,我們下面會詳細介紹;
2、SGA是共享的,即當有多個用戶同時登錄了這個實例,SGA中的信息可以被它們同時訪問(當涉及到互斥的問題時,由latch和enquence控制);
3、一個SGA只服務於一個實例,也就是說,當一台機器上有多個實例運行時,每個實例都有一個自己的SGA盡管SGA來自於OS的共享內存區,但實例之間不能相互訪問對方的SGA區。
它主要包括:
1.資料庫高速緩存(the database buffer cache),
2.重演日誌緩存(the redo log buffer)
3.共享池(the shared pool)
4.數據字典緩存(the data dictionary cache)以及其它各方面的信息。
1.數據高速緩沖區(Data Buffer Cache)
在數據高速緩沖區中存放著Oracle系統最近使用過的數據塊(即用戶的高速緩沖區),當把數據寫入資料庫時,它以數據塊為單位進行讀寫,當數據高速緩沖區填滿時,則系統自動去掉一些不常被用訪問的數據。如果用戶要查的數據不在數據高速緩沖區時,Oracle自動從磁碟中去讀取。數據高速緩沖區包括三個類型的區:1) 臟的區(Dirty Buffers):包含有已經改變過並需要寫回數據文件的數據塊。
2) 自由區(Free Buffers):沒有包含任何數據並可以再寫入的區,Oracle可以從數據文件讀數據塊該區。
3) 保留區(Pinned Buffers):此區包含有正在處理的或者明確保留用作將來用的區。
2.Redo Log Buffer Cache緩存對於數據塊的所有修改。
主要用於恢復其中的每一項修改記錄都被稱為redo 條目。利用Redo條目的信息可以重做修改。
3. Shared Pool用於緩存最近被執行的SQL語句和最近被使用的數據定義。
它主要由兩個內存結構構成:Library cache和Data dictionary cache
修改共享池的大小:ALTER SYSTEM SET SHARED_POOL_SIZE = 64M;
Libray Cache緩存最近被執行的SQL和PL/SQL的相關信息。實現常用語句的共享,使用LRU演算法進行管理
,由以下兩個結構構成:Shared SQL area、Shared PL/SQL area、Data Dictionary Cache、Data dictionary cache緩存最近被使用的資料庫定義。它包括關於資料庫文件、表、索引、列、用戶、許可權以及其它資料庫對象的信息。在語法分析階段,Server Process訪問數據字典中的信息以解析對象名和對存取操作進行驗證。數據字典信息緩存在內存中有助於縮短響應時間。
4.數據字典緩存(the data dictionary cache)

❺ 如何使用數據字典

為了對數據流程圖中的各個元素作出詳細的說明,有必要建立數據字典 (Data dictionary) 。數據字典的內容主要是對數據流程圖中的數據項、數據結構、數據流、處理邏輯、數據存儲和外部實體等六個方面進行具體的定義。數據流程圖配以數據字典,就可以從圖形和文字兩個方面對系統的邏輯模型進行完整的描述。

一、數據項的定義

數據項又稱數據元素,是數據的最小單位。分析數據特性應從靜態和動態兩個方面去進行。在數據字典中,僅定義數據的靜態特性,具體包括: (1) 數據項的名稱、編號、別名和簡述; (2) 數據項的長度; (3) 數據項的取值范圍;

例:數據項定義

數據項編號: I02 -01

數據項名稱:材料編號

別名:材料編碼

簡述:某種材料的代碼

類型及寬度:字元型, 4 位

取值范圍:「0001 」-「 9999 」

二、數據結構的定義

數據結構描述某些數據項之間的關系。一個數據結構可以由若干個數據項組成;也可以由若干個數據結構組成,還可以由若干個數據項和數據結構組成。例如表 5.l 所示訂貨單就是由三個數據結構組成的數據結構,表中用 DS 表示數據結構,用 I 表示數據項。

數據字典中對數據結構的定義包括以下內容: (1) 數據結構的名稱和編號; (2) 簡述;(3) 數據結構的組成。如果是一個簡單的數據結構,只要列出它所包含的數據項。如果是一個嵌套的數據結構 ( 即數據結構中包含數據結構 ) ,則需列出它所包含的數據結構、的名稱,因為這些被包含的數據結構在數據字典的其他部分已有定義。

例:數據結構定義

數據結構編號: DS03 - 08

數據結構名稱:用戶訂貨單

簡述:用戶所填用戶情況及訂貨要求等信息

數據結構組成: DS03 - 02 + DS03 - 03 + DS03 -04

三、數據流的定義
數據流由一個或一組固定的數據項組成。定義數據流時,不僅要說明數據流的名稱、組成等,還應指明它的來源、去向和數據流量等。

例:數據流定義

數據流編號: FD3 - 08

數據流名稱:領料單

簡述:車間開出的領料單

數據流來源:車間

數據流去向:發料處理模塊

數據流組成:材料編號 + 材料名稱 + 領用數量+ 日期 + 領用單位

數據流量: 10 份/時

高峰流量: 20 份/時 ( 上午9 : 00 -11 : 00)

四、處理邏輯的定義

處理邏輯的定義僅對數據流程圖中最底層的處理邏輯加以說明。編寫數據字典是系統開發的一項重要的基礎工作。一旦建立,並按編號排序之後,就是一本可供查閱的關於數據的字典,從系統分析一直到系統設計和實施都要使用它。在數據字典的建立、修正和補充過程中,始終要注意保證數據的一致性和完整性。

數據字典可以用人工建立卡片的辦法來管理,也可存儲在計算機中用一個數據字典軟體來管理。

❻ SQL語句執行過程詳解

SQL語句執行過程詳解
一條sql,plsql的執行到底是怎樣執行的呢?
一、SQL語句執行原理:
第一步:客戶端把語句發給伺服器端執行當我們在客戶端執行 select 語句時,客戶端會把這條 SQL 語句發送給伺服器端,讓伺服器端的
進程來處理這語句。也就是說,Oracle 客戶端是不會做任何的操作,他的主要任務就是把客戶端產生
的一些 SQL 語句發送給伺服器端。雖然在客戶端也有一個資料庫進程,但是,這個進程的作用跟伺服器
上的進程作用事不相同的。伺服器上的資料庫進程才會對SQL 語句進行相關的處理。不過,有個問題需
要說明,就是客戶端的進程跟伺服器的進程是一一對應的。也就是說,在客戶端連接上伺服器後,在客戶
端與伺服器端都會形成一個進程,客戶端上的我們叫做客戶端進程;而伺服器上的我們叫做伺服器進程。
第二步:語句解析
當客戶端把 SQL 語句傳送到伺服器後,伺服器進程會對該語句進行解析。同理,這個解析的工作,
也是在伺服器端所進行的。雖然這只是一個解析的動作,但是,其會做很多「小動作」。
1. 查詢高速緩存(library cache)。伺服器進程在接到客戶端傳送過來的 SQL 語句時,不
會直接去資料庫查詢。而是會先在資料庫的高速緩存中去查找,是否存在相同語句的執行計劃。如果在
數據高速緩存中,則伺服器進程就會直接執行這個 SQL 語句,省去後續的工作。所以,採用高速數據緩
存的話,可以提高 SQL 語句的查詢效率。一方面是從內存中讀取數據要比從硬碟中的數據文件中讀取
數據效率要高,另一方面,也是因為這個語句解析的原因。
不過這里要注意一點,這個數據緩存跟有些客戶端軟體的數據緩存是兩碼事。有些客戶端軟體為了
提高查詢效率,會在應用軟體的客戶端設置數據緩存。由於這些數據緩存的存在,可以提高客戶端應用軟
件的查詢效率。但是,若其他人在伺服器進行了相關的修改,由於應用軟體數據緩存的存在,導致修改的
數據不能及時反映到客戶端上。從這也可以看出,應用軟體的數據緩存跟資料庫伺服器的高速數據緩存
不是一碼事。
2. 語句合法性檢查(data dict cache)。當在高速緩存中找不到對應的 SQL 語句時,則服
務器進程就會開始檢查這條語句的合法性。這里主要是對 SQL 語句的語法進行檢查,看看其是否合乎
語法規則。如果伺服器進程認為這條 SQL 語句不符合語法規則的時候,就會把這個錯誤信息,反饋給客
戶端。在這個語法檢查的過程中,不會對 SQL 語句中所包含的表名、列名等等進行 SQL 他只是語法
上的檢查。
3. 語言含義檢查(data dict cache)。若 SQL 語句符合語法上的定義的話,則伺服器進程
接下去會對語句中的欄位、表等內容進行檢查。看看這些欄位、表是否在資料庫中。如果表名與列名不
准確的話,則資料庫會就會反饋錯誤信息給客戶端。所以,有時候我們寫 select 語句的時候,若語法
與表名或者列名同時寫錯的話,則系統是先提示說語法錯誤,等到語法完全正確後,再提示說列名或表名
錯誤。
4. 獲得對象解析鎖(control structer)。當語法、語義都正確後,系統就會對我們需要查詢
的對象加鎖。這主要是為了保障數據的一致性,防止我們在查詢的過程中,其他用戶對這個對象的結構發
生改變。
5. 數據訪問許可權的核對(data dict cache)。當語法、語義通過檢查之後,客戶端還不一定
能夠取得數據。伺服器進程還會檢查,你所連接的用戶是否有這個數據訪問的許可權。若你連接上伺服器
的用戶不具有數據訪問許可權的話,則客戶端就不能夠取得這些數據。有時候我們查詢數據的時候,辛辛苦
苦地把 SQL 語句寫好、編譯通過,但是,最後系統返回個 「沒有許可權訪問數據」的錯誤信息,讓我們氣
半死。這在前端應用軟體開發調試的過程中,可能會碰到。所以,要注意這個問題,資料庫伺服器進程先
檢查語法與語義,然後才會檢查訪問許可權。
6. 確定最佳執行計劃 ?。當語句與語法都沒有問題,許可權也匹配的話,伺服器進程還是不會直接對
資料庫文件進行查詢。伺服器進程會根據一定的規則,對這條語句進行優化。不過要注意,這個優化是有
限的。一般在應用軟體開發的過程中,需要對資料庫的 sql 語言進行優化,這個優化的作用要大大地大
於伺服器進程的自我優化。所以,一般在應用軟體開發的時候,資料庫的優化是少不了的。當伺服器進程
的優化器確定這條查詢語句的最佳執行計劃後,就會將這條 SQL 語句與執行計劃保存到數據高速緩存
(library cache)。如此的話,等以後還有這個查詢時,就會省略以上的語法、語義與許可權檢查的步驟,
而直接執行 SQL 語句,提高 SQL 語句處理效率。
第三步:語句執行
語句解析只是對 SQL 語句的語法進行解析,以確保伺服器能夠知道這條語句到底表達的是什麼意
思。等到語句解析完成之後,資料庫伺服器進程才會真正的執行這條 SQL 語句。這個語句執行也分兩
種情況。
一是若被選擇行所在的數據塊已經被讀取到數據緩沖區的話,則伺服器進程會直接把這個數據傳遞
給客戶端,而不是從資料庫文件中去查詢數據。
若數據不在緩沖區中,則伺服器進程將從資料庫文件中查詢相關數據,並把這些數據放入到數據緩沖
區中(buffer cache)。
第四步:提取數據
當語句執行完成之後,查詢到的數據還是在伺服器進程中,還沒有被傳送到客戶端的用戶進程。所以,
在伺服器端的進程中,有一個專門負責數據提取的一段代碼。他的作用就是把查詢到的數據結果返回給
用戶端進程,從而完成整個查詢動作。從這整個查詢處理過程中,我們在資料庫開發或者應用軟體開發過
程中,需要注意以下幾點:
一是要了解資料庫緩存跟應用軟體緩存是兩碼事情。資料庫緩存只有在資料庫伺服器端才存在,在
客戶端是不存在的。只有如此,才能夠保證資料庫緩存中的內容跟資料庫文件的內容一致。才能夠根據
相關的規則,防止數據臟讀、錯讀的發生。而應用軟體所涉及的數據緩存,由於跟資料庫緩存不是一碼事
情,所以,應用軟體的數據緩存雖然可以提高數據的查詢效率,但是,卻打破了數據一致性的要求,有時候
會發生臟讀、錯讀等情況的發生。所以,有時候,在應用軟體上有專門一個功能,用來在必要的時候清除
數據緩存。不過,這個數據緩存的清除,也只是清除本機上的數據緩存,或者說,只是清除這個應用程序
的數據緩存,而不會清除資料庫的數據緩存。
二是絕大部分 SQL 語句都是按照這個處理過程處理的。我們 DBA 或者基於 Oracle 資料庫的
開發人員了解這些語句的處理過程,對於我們進行涉及到 SQL 語句的開發與調試,是非常有幫助的。有
時候,掌握這些處理原則,可以減少我們排錯的時間。特別要注意,資料庫是把數據查詢許可權的審查放在
語法語義的後面進行檢查的。所以,有時會若光用資料庫的許可權控制原則,可能還不能滿足應用軟體許可權
控制的需要。此時,就需要應用軟體的前台設置,實現許可權管理的要求。而且,有時應用資料庫的許可權管
理,也有點顯得繁瑣,會增加伺服器處理的工作量。因此,對於記錄、欄位等的查詢許可權控制,大部分程
序涉及人員喜歡在應用程序中實現,而不是在資料庫上實現。
DBCC DROPCLEANBUFFERS
從緩沖池中刪除所有清除緩沖區。
DBCC FREEPROCCACHE
從過程緩存中刪除所有元素。
DBCC FREESYSTEMCACHE
從所有緩存中釋放所有未使用的緩存條目
SQL語句中的函數、關鍵字、排序等執行順序:
1. FROM 子句返回初始結果集。
2. WHERE 子句排除不滿足搜索條件的行。
3. GROUP BY 子句將選定的行收集到 GROUP BY 子句中各個唯一值的組中。
4. 選擇列表中指定的聚合函數可以計算各組的匯總值。
5. 此外,HAVING 子句排除不滿足搜索條件的行。
6. 計算所有的表達式;
7. 使用 order by 對結果集進行排序。
8. 查找你要搜索的欄位。
二、SQL語句執行完整過程:
1.用戶進程提交一個 sql 語句:
update temp set a=a*2,給伺服器進程。
2.伺服器進程從用戶進程把信息接收到後,在 PGA 中就要此進程分配所需內存,存儲相關的信息,如在會
話內存存儲相關的登錄信息等。
3.伺服器進程把這個 sql 語句的字元轉化為 ASCII 等效數字碼,接著這個 ASCII 碼被傳遞給一個
HASH 函數,並返回一個 hash 值,然後伺服器進程將到shared pool 中的 library cache 中去查找是否存在相
同的 hash 值,如果存在,伺服器進程將使用這條語句已高速緩存在 SHARED POOL 的library cache 中的已
分析過的版本來執行。
4.如果不存在,伺服器進程將在 CGA 中,配合 UGA 內容對 sql,進行語法分析,首先檢查語法的正確性,接
著對語句中涉及的表,索引,視圖等對象進行解析,並對照數據字典檢查這些對象的名稱以及相關結構,並根據
ORACLE 選用的優化模式以及數據字典中是否存在相應對象的統計數據和是否使用了存儲大綱來生成一個
執行計劃或從存儲大綱中選用一個執行計劃,然後再用數據字典核對此用戶對相應對象的執行許可權,最後生成
一個編譯代碼。
5.ORACLE 將這條 sql 語句的本身實際文本、HASH 值、編譯代碼、與此語名相關聯的任何統計數據
和該語句的執行計劃緩存在 SHARED POOL 的 library cache中。伺服器進程通過 SHARED POOL 鎖存
器(shared pool latch)來申請可以向哪些共享 PL/SQL 區中緩存這此內容,也就是說被SHARED POOL 鎖存
器鎖定的 PL/SQL 區中的塊不可被覆蓋,因為這些塊可能被其它進程所使用。
6.在 SQL 分析階段將用到 LIBRARY
CACHE,從數據字典中核對表、視圖等結構的時候,需要將數據
字典從磁碟讀入 LIBRARY
CACHE,因此,在讀入之前也要使用LIBRARY
CACHE 鎖存器(library cache
pin,library cache lock)來申請用於緩存數據字典。 到現在為止,這個 sql 語句已經被編譯成可執行的代碼了,
但還不知道要操作哪些數據,所以伺服器進程還要為這個 sql 准備預處理數據。
7.首先伺服器進程要判斷所需數據是否在 db buffer 存在,如果存在且可用,則直接獲取該數據,同時根據
LRU 演算法增加其訪問計數;如果 buffer 不存在所需數據,則要從數據文件上讀取首先伺服器進程將在表頭部
請求 TM 鎖(保證此事務執行過程其他用戶不能修改表的結構),如果成功加 TM 鎖,再請求一些行級鎖(TX
鎖),如果 TM、TX 鎖都成功加鎖,那麼才開始從數據文件讀數據,在讀數據之前,要先為讀取的文件准備好
buffer 空間。伺服器進程需要掃面 LRU list 尋找 free db buffer,掃描的過程中,伺服器進程會把發現的所有
已經被修改過的 db buffer 注冊到 dirty list 中, 這些 dirty buffer 會通過 dbwr 的觸發條件,隨後會被寫出到
數據文件,找到了足夠的空閑 buffer,就可以把請求的數據行所在的數據塊放入到 db buffer 的空閑區域或者
覆蓋已經被擠出 LRU list 的非臟數據塊緩沖區,並排列在 LRU list 的頭部,也就是在數據塊放入 DB
BUFFER 之前也是要先申請 db buffer 中的鎖存器,成功加鎖後,才能讀數據到 db buffer。
8.記日誌 現在數據已經被讀入到 db buffer 了,現在伺服器進程將該語句所影響的並被讀
入 db buffer 中的這些行數據的 rowid 及要更新的原值和新值及 scn 等信息從 PGA 逐條的寫入 redo log
buffer 中。在寫入 redo log buffer 之前也要事先請求 redo log buffer 的鎖存器,成功加鎖後才開始寫入,當
寫入達到 redo log buffer 大小的三分之一或寫入量達到 1M 或超過三秒後或發生檢查點時或者 dbwr 之前
發生,都會觸發 lgwr 進程把 redo log buffer 的數據寫入磁碟上的 redo file 文件中(這個時候會產生log file
sync 等待事件)
已經被寫入 redofile 的 redo log buffer 所持有的鎖存器會被釋放,並可被後來的寫入信息覆蓋,
redo log buffer是循環使用的。Redo file 也是循環使用的,當一個 redo file 寫滿後,lgwr 進程會自動切換到
下一 redo file(這個時候可能出現 log fileswitch(checkpoint complete)等待事件)。如果是歸檔模式,歸檔進
程還要將前一個寫滿的 redo file 文件的內容寫到歸檔日誌文件中(這個時候可能出現 log file
switch(archiving needed)。
9.為事務建立回滾段 在完成本事務所有相關的 redo log buffer 之後,伺服器進程開始改寫這個 db buffer
的塊頭部事務列表並寫入 scn,然後 包含這個塊的頭部事務列表及 scn 信息的數據副本放入回滾段中,將
這時回滾段中的信息稱為數據塊的「前映像「,這個」前映像「用於以後的回滾、恢復和一致性讀。(回滾段可以
存儲在專門的回滾表空間中,這個表空間由一個或多個物理文件組成,並專用於回滾表空間,回滾段也可在其它
表空間中的數據文件中開辟。
10.本事務修改數據塊 准備工作都已經做好了,現在可以改寫 db buffer 塊的數據內容了,並在塊的頭部寫
入回滾段的地址。
11.放入 dirty list 如果一個行數據多次 update 而未 commit,則在回滾段中將會有多個「前映像「,除了第
一個」前映像「含有 scn 信息外,其他每個「前映像「的頭部都有 scn 信息和「前前映像」回滾段地址。一個
update 只對應一個 scn,然後伺服器進程將在 dirty list 中建立一
條指向此 db buffer 塊的指針(方便 dbwr 進程可以找到 dirty list 的 db buffer 數據塊並寫入數據文件中)。
接著伺服器進程會從數據文件中繼續讀入第二個數據塊,重復前一數據塊的動作,數據塊的讀入、記日誌、建
立回滾段、修改數據塊、放入 dirty list。當 dirty queue 的長度達到閥值(一般是 25%),伺服器進程將通知
dbwr 把臟數據寫出,就是釋放 db buffer 上的鎖存器,騰出更多的 free db buffer。前面一直都是在說明
oracle 一次讀一個數據塊,其實 oracle 可以一次讀入多個數據塊(db_file_multiblock_read_count 來設置一
次讀入塊的個數)
說明:
在預處理的數據已經緩存在 db buffer 或剛剛被從數據文件讀入到 db buffer 中,就要根據 sql 語句
的類型來決定接下來如何操作。
1>如果是 select 語句,則要查看 db buffer 塊的頭部是否有事務,如果有事務,則從回滾段中讀取數據;如
果沒有事務,則比較 select 的 scn 和 db buffer 塊頭部的 scn,如果前者小於後者,仍然要從回滾段中讀取數據;
如果前者大於後者,說明這是一非臟緩存,可以直接讀取這個 db buffer 塊的中內容。
2>如果是 DML 操作,則即使在 db buffer 中找到一個沒有事務,而且 SCN 比自己小的非臟
緩存數據塊,伺服器進程仍然要到表的頭部對這條記錄申請加鎖,加鎖成功才能進行後續動作,如果不成功,則要
等待前面的進程解鎖後才能進行動作(這個時候阻塞是 tx 鎖阻塞)。
用戶 commit 或 rollback 到現在為止,數據已經在 db buffer 或數據文件中修改完
成,但是否要永久寫到數文件中,要由用戶來決定 commit(保存更改到數據文件) rollback 撤銷數據的更改)。
1.用戶執行 commit 命令
只有當 sql 語句所影響的所有行所在的最後一個塊被讀入 db buffer 並且重做信息被寫入 redo log
buffer(僅指日誌緩沖區,而不包括日誌文件)之後,用戶才可以發去 commit 命令,commit 觸發 lgwr 進程,但不
強制立即 dbwr來釋放所有相應 db buffer 塊的鎖(也就是no-force-at-commit,即提交不強制寫),也就是說有
可能雖然已經 commit 了,但在隨後的一段時間內 dbwr 還在寫這條 sql 語句所涉及的數據塊。表頭部的行鎖
並不在 commit 之後立即釋放,而是要等 dbwr 進程完成之後才釋放,這就可能會出現一個用戶請求另一用戶
已經 commit 的資源不成功的現象。
A .從 Commit 和 dbwr 進程結束之間的時間很短,如果恰巧在 commit 之後,dbwr 未結束之前斷電,因為
commit 之後的數據已經屬於數據文件的內容,但這部分文件沒有完全寫入到數據文件中。所以需要前滾。由
於 commit 已經觸發 lgwr,這些所有未來得及寫入數據文件的更改會在實例重啟後,由 smon 進程根據重做日
志文件來前滾,完成之前 commit 未完成的工作(即把更改寫入數據文件)。
B.如果未 commit 就斷電了,因為數據已經在 db buffer 更改了,沒有 commit,說明這部分數據不屬於數
據文件,由於 dbwr 之前觸發 lgwr 也就是只要數據更改,(肯定要先有 log) 所有 DBWR,在數據文件上的修改
都會被先一步記入重做日誌文件,實例重啟後,SMON 進程再根據重做日誌文件來回滾。
其實 smon 的前滾回滾是根據檢查點來完成的,當一個全部檢查點發生的時候,首先讓 LGWR 進程將
redo log buffer 中的所有緩沖(包含未提交的重做信息)寫入重做日誌文件,然後讓 dbwr 進程將 db buffer 已
提交的緩沖寫入數據文件(不強制寫未提交的)。然後更新控制文件和數據文件頭部的 SCN,表明當前資料庫
是一致的,在相鄰的兩個檢查點之間有很多事務,有提交和未提交的。
像前面的前滾回滾比較完整的說法是如下的說明:

A.發生檢查點之前斷電,並且當時有一個未提交的改變正在進行,實例重啟之後,SMON 進程將從上一個
檢查點開始核對這個檢查點之後記錄在重做日誌文件中已提交的和未提交改變,因為
dbwr 之前會觸發 lgwr,所以 dbwr 對數據文件的修改一定會被先記錄在重做日誌文件中。因此,斷電前被
DBWN 寫進數據文件的改變將通過重做日誌文件中的記錄進行還原,叫做回滾,
B. 如果斷電時有一個已提交,但 dbwr 動作還沒有完全完成的改變存在,因為已經提交,提交會觸發 lgwr
進程,所以不管 dbwr 動作是否已完成,該語句將要影響的行及其產生的結果一定已經記錄在重做日誌文件中
了,則實例重啟後,SMON 進程根據重做日誌文件進行前滾.
實例失敗後用於恢復的時間由兩個檢查點之間的間隔大小來決定,可以通個四個參數設置檢查點執行的頻
率:

Log_checkpoint_interval:
決定兩個檢查點之間寫入重做日誌文件的系統物理塊(redo blocks)
的大小,默認值是 0,無限制。
log_checkpoint_timeout:
兩 個 檢 查 點 之 間 的 時 間 長 度(秒)默 認 值 1800s。
fast_start_io_target:
決定了用於恢復時需要處理的塊的多少,默認值是 0,無限制。
fast_start_mttr_target:
直接決定了用於恢復的時間的長短,默認值是 0,無限制(SMON 進程執行的前滾
和回滾與用戶的回滾是不同的,SMON 是根據重做日誌文件進行前滾或回滾,而用戶的回滾一定是根據回滾段
的內容進行回滾的。
在這里要說一下回滾段存儲的數據,假如是 delete 操作,則回滾段將會記錄整個行的數據,假如是 update,
則回滾段只記錄被修改了的欄位的變化前的數據(前映像),也就是沒有被修改的欄位是不會被記錄的,假如是
insert,則回滾段只記錄插入記錄的 rowid。 這樣假如事務提交,那回滾段中簡單標記該事務已經提交;假如是
回退,則如果操作是 delete,回退的時候把回滾段中數據重新寫回數據塊,操作如果是 update,則把變化前數據
修改回去,操作如果是 insert,則根據記錄的 rowid 把該記錄刪除。
2.如果用戶 rollback。
則伺服器進程會根據數據文件塊和 DB BUFFER 中塊的頭部的事務列表和 SCN 以及回滾段地址找到
回滾段中相應的修改前的副本,並且用這些原值來還原當前數據文件中已修改但未提交的改變。如果有多個
「前映像」,伺服器進程會在一個「前映像」的頭部找到「前前映像」的回滾段地址,一直找到同一事務下的最早的
一個「前映像」為止。一旦發出了 COMMIT,用戶就不能rollback,這使得 COMMIT 後 DBWR 進程還沒有
全部完成的後續動作得到了保障。到現在為例一個事務已經結束了。
說明:
TM 鎖:
符合 lock 機制的,用於保護對象的定義不被修改。 TX 鎖:
這個鎖代表一個事務,是行
級鎖,用數據塊頭、數據記錄頭的一些欄位表示,也是符合 lock 機制,有 resource structure、lock
structure、enqueue 演算法。

❼ 請問Oracle的庫高速緩存、數據字典高速緩存的作用分別是什麼請給予詳細點的解答,謝謝

庫高速緩存
是用來存放你實際表的數據塊的,如表TAB_A里實際存放的若干條數據記錄,一般都存放在用戶的表空間里。
數據字典高速緩存
用來存放表的定義,如表TAB_A,有幾個欄位,每個欄位的類型、長度,表空間等,這類信息在你建表後會存放在系統表裡,都是在SYSTEM表空間下,ORACLE運行時,這些信息被裝入
數據字典高速緩存里。

❽ 解析後的SQL語句在SGA的哪個區域中進行緩

在Oracle9i里,Oracle提供了一個內部事件,用以強制刷新Buffer Cache。
其語法為:
alter session set events 'immediate trace name flush_cache level 1';
或者:
alter session set events = 'immediate trace name flush_cache';
類似的也可以使用alter system系統級設置:
alter system set events = 'immediate trace name flush_cache';
在Oracle10g中,Oracle提供一個新的特性,可以通過如下命令刷新Buffer Cache:

alter system flush buffer_cache;

❾ 微信小程序 wx.setStorage 緩存字典策略

官方提供了wx.setStorage 等介面給開發者緩存數據,但是對於使用Array()來緩存字典數據似乎存在bug?在設置後並不能成功。

控制台里是這樣的蘆旦!

解決方案如下

我的需求是緩存一個閱讀記耐答錄的字典其數據格式如下

可以根據小說id去獲取昌嘩慧最近閱讀的章節的id

❿ 如何設置使oracle10g性能最優 性能調優 步驟

一、 磁碟方面調優
1. 規范磁碟陣列
RAID 10比RAID5更適用於OLTP系統,RAID10先鏡像磁碟,再對其進行分段,由於對數據的小規模訪問會比較頻繁,所以對OLTP適用。而RAID5,優勢在於能夠充分利用磁碟空間,並且減少陣列的總成本。但是由於陣列發出一個寫入請求時,必須改變磁碟上已修改的塊,需要從磁碟上讀取「奇偶校驗」塊,並且使用已修改的塊計算新的奇偶校驗塊,然後把數據寫入磁碟,且會限制吞吐量。對性能有所影響,RAID5適用於OLAP系統。

2. 數據文件分布
分離下面的東西,避免磁碟競爭
Ø SYSTEM表空間
Ø TEMPORARY表空間
Ø UNDO表空間
Ø 聯機重做日誌(放在最快的磁碟上)
Ø 操作系統磁碟
Ø ORACLE安裝目錄
Ø 經常被訪問的數據文件
Ø 索引表空間
Ø 歸檔區域(應該總是與將要恢復的數據分離)
例:
² /: System
² /u01: Oracle Software
² /u02: Temporary tablespace, Control file1
² /u03: Undo Segments, Control file2
² /u04: Redo logs, Archive logs, Control file4
² /u05: System, SYSAUX tablespaces
² /u06: Data1 ,control file3
² /u07: Index tablespace
² /u08: Data2
通過下列語句查詢確定IO問題
select name ,phyrds,phywrts,readtim,writetim
from v$filestat a,v$datafile b
where a.file#=b.file# order by readtim desc;

3. 增大日誌文件

u 增大日誌文件的大小,從而增加處理大型INSERT,DELETE,UPDATE操作的比例
查詢日誌文件狀態
select a.member,b.* from v$logfile a,v$log b where a.GROUP#=b.GROUP#
查詢日誌切換時間
select b.RECID,to_char(b.FIRST_TIME,'yyyy-mm-dd hh24:mi:ss') start_time,a.RECID,to_char(a.FIRST_TIME,'yyyy-mm-dd hh24:mi:ss') end_time,round(((a.FIRST_TIME-b.FIRST_TIME)*25)*60,2) minutes
from v$log_history a ,v$log_history b
where a.RECID=b.RECID+1
order by a.FIRST_TIME desc

增大日誌文件大小,以及對每組增加日誌文件(一個主文件、一個多路利用文件)
u 增大LOG_CHECKPOINT_INTERVAL參數,現已不提倡使用它
如果低於每半小時切換一次日誌,就增大聯機重做日誌大小。如果處理大型批處理任務時頻繁進行切換,就增大聯機重做日誌數目。
alter database add logfile member 『/log.ora』 to group 1;
alter database drop logfile member 『/log.ora』;

4. UNDO表空間
修改三個初始參數:
UNDO_MANAGEMENT=AUTO
UNDO_TABLESPACE=CLOUDSEA_UNDO
UNDO_RETENTION=<#of minutes>

5. 不要在系統表空間中執行排序

二、 初始化參數調優
32位的定址最大支持應該是2的32次方,就是4G大小。但實際中32位系統(XP,windows2003等MS32位系統, ubuntu等linux32 位系統)要能利用4G內存,都是採用內存重映射技術。需要主板及系統的支持。如果關閉主板BIOS的重映射功能,系統將不能利用4G內存,可能只達3.5G.而在windows下看到的一般為3.25G。所以SGA設置為內存的40%,但不能超過3.25G
1. 重要初始化參數
l SGA_MAX_SIZE
l SGA_TARGET
l PGA_AGGREGATE_TARGET
l DB_CACHE_SIZE
l SHARED_POOL_SIZE

2. 調整DB_CACHE_SIZE來提高性能
它設定了用來存儲和處理內存中數據的SGA區域大小,從內存中取數據比磁碟快10000倍以上
根據以下查詢出數據緩存命中率
select sum(decode(name,'physical reads',value,0)) phys,
sum(decode(name,'db block gets',value,0)) gets,
sum(decode(name,'consistent gets',value,0)) con_gets,
(1- (sum(decode(name,'physical reads',value,0))/(sum(decode(name,'db block gets',value,0))+sum(decode(name,'consistent gets',value,0)) ) ))*100 Hitratio
from v$sysstat;
一個事務處理程序應該保證得到95%以上的命中率,命中率從90%提高到98%可能會提高500%的性能,ORACLE正在通過CPU或服務時間與等待時間來分析系統性能,不太重視命中率,不過現在的庫緩存和字典緩存仍將命中率作為基本的調整方法。

在調整DB_CACHE_SIZE時使用V$DB_CACHE_ADVICE
select size_for_estimate, estd_physical_read_factor, estd_physical_reads
from v$db_cache_advice
where name = 'DEFAULT';

如果查詢的命中率過低,說明缺少索引或者索引受到限制,通過V$SQLAREA視圖查詢執行緩慢的SQL

3. 設定DB_BLOCK_SIZE來反映數據讀取量大小
OLTP一般8K
OLAP一般16K或者32K

4. 調整SHARED_POOL_SIZE以優化性能

正確地調整此參數可以同等可能地共享SQL語句,使得在內存中便能找到使用過的SQL語句。為了減少硬解析次數,優化對共享SQL區域的使用,需盡量使用存儲過程、使用綁定變數

保證數據字典緩存命中率在95%以上
select ((1- sum(getmisses)/(sum(gets)+sum(getmisses)))*100) hitratio
from v$rowcache
where gets+getmisses <>0;

如果命中率小於 99%,就可以考慮增加shared pool 以提高library cache 的命中率

SELECT SUM(PINS) "EXECUTIONS",SUM(RELOADS) "CACHE MISSES WHILE EXECUTING",1 - SUM(RELOADS)/SUM(PINS)
FROM V$LIBRARYCACHE;

通常規則是把它定為DB_CACHE_SIZE大小的50%-150%,在使用了大量存儲過程或程序包,但只有有限內存的系統里,最後分配為150%。在沒有使用存儲過程但大量分配內存給DB_CACHE_SIZE的系統里,這個參數應該為10%-20%

5. 調整PGA_AGGREGATE_TARGET以優化對內存的應用
u OLTP :totalmemory*80%*20%
u DSS: totalmemory*80%*50%

6. 25個重要初始化參數
² DB_CACHE_SIZE:分配給數據緩存的初始化內存
² SGA_TARGET:使用了自動內存管理,則設置此參數。設置為0可禁用它
² PGA_AGGREGATE_TARGET:所有用戶PGA軟內存最大值
² SHARED_POOL_SIZE:分配給數據字典、SQL和PL/SQL的內存
² SGA_MAX_SIZE:SGA可動態增長的最大內存
² OPTIMIZER_MODE:
² CURSOR_SHARING:把字面SQL轉換成帶綁定變更的SQL,可減少硬解析開銷
² OPTIMIZER_INDEX_COST_ADJ:索引掃描成本和全表掃描成本進行調整,設定在1-10間會強制頻繁地使用索引,保證索引可用性
² QUERY_REWRITE_ENABLED:用於啟用具體化視圖和基於函數的索引功能
² DB_FILE_MULTIBLOCK_READ_COUNT:對於全表掃描,為了更有效執行IO,此參數可在一次IO中讀取多個塊
² LOG_BUFFER:為內存中沒有提交的事務分配緩沖區(非動態參數)
² DB_KEEP_CACHE_SIZE:分配給KEEP池或者額外數據緩存的內存
² DB_RECYCLE_CACHE_SIZE:
² DBWR_IO_SLAVES:如果沒有非同步IO,參數等同於DB_WRITER_PROCESSES模擬非同步IO而分配的從SGA到磁碟的寫入器數。如果有非同步IO,則使用DB_WRITER_PROCESSES設置多個寫程序,在DBWR期間更快地寫出臟塊
² LARGE_POOL_SIZE:分配給大型PLSQL或其他一些很少使用的ORACLE選項LARGET池的總塊數
² STATISTICS_LEVEL:啟用顧問信息,並可選擇提供更多OS統計信息來改進優化器決策。默認:TYPICAL
² JAVA_POOL_SIZE:為JVM使用的JAVA存儲過程所分配的內存
² JAVA_MAX_SESSIONSPACE_SIZE:跟蹤JAVA類的用戶會話狀態所用內存上限
² MAX_SHARED_SERVERS:當使用共享伺服器時的共享伺服器上限
² WORKAREA_SIZE_POLICY:啟用PGA大小自動管理
² FAST_START_MTTR_TARGET:完成一次崩潰恢復的大概時間/S
² LOG_CHECKPOINT_INTERVAL:檢查點頻率
² OPEN_CURSORS:指定了保存用戶語句的專用區域大小,如此設置過高會導致ORA-4031
² DB_BLOCK_SIZE:資料庫默認塊大小
² OPTIMIZER_DYNAMIC_SAMPLING:控制動態抽樣查詢讀取的塊數量,對正在使用全局臨時表的系統非常有用

三、 SQL調優1. 使用提示
1.1 改變執行路徑
通過OPTIMIZER_MODE參數指定優化器使用方法,默認ALL_ROWS
Ø ALL_ROWS 可得最佳吞吐量執行查詢所有行
Ø FIRST_ROWS(n) 可使優化器最快檢索出第一行:
select /*+ FIRST_ROWS(1) */ store_id,… from tbl_store

1.2 使用訪問方法提示
允許開發人員改變訪問的實際查詢方式,經常使用INDEX提示
Ø CLUSTER 強制使用集群
Ø FULL
Ø HASH
Ø INDEX 語法:/*+ INDEX (TABLE INDEX1,INDEX2….) */ COLUMN 1,….
當不指定任何INDEX時,優化器會選擇最佳的索引
SELECT /*+ INDEX */ STORE_ID FROM TBL_STORE
Ø INDEX_ASC 8I開始默認是升序,所以與INDEX同效
Ø INDEX_DESC
Ø INDEX_COMBINE 用來指定多個點陣圖索引,而不是選擇其中最好的索引
Ø INDEX_JOIN 只需訪問這些索引,節省了重新檢索表的時間
Ø INDEX_FFS 執行一次索引的快速全局掃描,只處理索引,不訪問具體表
Ø INDEX_SS
Ø INDEX_SSX_ASC
Ø INDEX_SS_DESC
Ø NO_INDEX
Ø NO_INDEX_FFS
Ø NO_INDEX_SS
1.3 使用查詢轉換提示
對於數據倉庫非常有幫助
Ø FACT
Ø MERGE
Ø NO_EXPAND 語法:/*+ NO_EXPAND */ column1,…
保證OR組合起的IN列表不會陷入困境,/*+ FIRST_ROWS NO_EXPAND */
Ø NO_FACT
Ø NO_MERGE
Ø NO_QUERY_TRANSFORMATION
Ø NO_REWRITE
Ø NO_STAR_TRANSFORMATION
Ø NO_UNSET
Ø REWRITE
Ø STAR_TRANSFORMATION
Ø UNSET
Ø USE_CONCAT

1.4 使用連接操作提示
顯示如何將連接表中的數據合並在一起,可用兩提示直接影響連接順序。LEADING指定連接順序首先使用的表,ORDERED告訴優化器基於FROM子句中的表順序連接這些表,並使用第一個表作為驅動表(最行訪問的表)
ORDERED語法:/*+ ORDERED */ column 1,….
訪問表順序根據FROM後的表順序來
LEADING語法:/*+ LEADING(TABLE1) */ column 1,….
類似於ORDER,指定驅動表
Ø NO_USE_HASH
Ø NO_USE_MERGE
Ø NO_USE_NL
Ø USE_HASH前提足夠的HASH_AREA_SIZE或PGA_AGGREGATE_TARGET
通常可以為較大的結果集提供最佳的響應時間
Ø USE_MERGE
Ø USE_NL 通常可以以最快速度返回一個行
Ø USE_NL_WITH_INDEX

1.5 使用並行執行
Ø NO_PARALLEL
Ø NO_PARALLEL_INDEX
Ø PARALLEL
Ø PARALLEL_INDEX
Ø PQ_DISTRIBUTE

1.6 其他提示
Ø APPEND 不會檢查當前所用塊中是否有剩餘空間,而直接插入到表中,會直接將數據添加到新的塊中。
Ø CACHE 會將全表掃描全部緩存到內存中,這樣可直接在內存中找到數據,不用在磁碟上查詢
Ø CURSOR_SHARING_EXACT
Ø DRIVING_SITE
Ø DYNAMIC_SAMPLING
Ø MODEL_MIN_ANALYSIS
Ø NOAPPEND
Ø NOCACHE
Ø NO_PUSH_PRED
Ø NO_PUSH_SUBQ
Ø NO_PX_JOIN_FILTER
Ø PUSH_PRED
Ø PUSH_SUBQ 強制先執行子查詢,當子查詢很快返回少量行時,這些行可以用於限制外部查詢返回行數,可極大地提高性能
例:select /*+PUSH_SUBQ */ emp.empno,emp.ename
From emp,orders
where emp.deptno=(select deptno from dept where loc=』1』)
Ø PX_JOIN_FILTER
Ø QB_NAME

2. 調整查詢

2.1 在V$SQLAREA中選出最佔用資源的查詢

HASH_VALUE:SQL語句的Hash值。
ADDRESS:SQL語句在SGA中的地址。
PARSING_USER_ID:為語句解析第一條CURSOR的用戶
VERSION_COUNT:語句cursor的數量
KEPT_VERSIONS:
SHARABLE_MEMORY:cursor使用的共享內存總數
PERSISTENT_MEMORY:cursor使用的常駐內存總數
RUNTIME_MEMORY:cursor使用的運行時內存總數。
SQL_TEXT:SQL語句的文本(最大隻能保存該語句的前1000個字元)。
MODULE,ACTION:用了DBMS_APPLICATION_INFO時session解析第一條cursor時信息
SORTS: 語句的排序數
CPU_TIME: 語句被解析和執行的CPU時間
ELAPSED_TIME: 語句被解析和執行的共用時間
PARSE_CALLS: 語句的解析調用(軟、硬)次數
EXECUTIONS: 語句的執行次數
INVALIDATIONS: 語句的cursor失效次數
LOADS: 語句載入(載出)數量
ROWS_PROCESSED: 語句返回的列總數
select b.username,a.DISK_READS,a.EXECUTIONS,a.DISK_READS/decode(a.EXECUTIONS,0,1,a.EXECUTIONS) rds_exec_ratio,a.SQL_TEXT
from v$sqlarea a ,dba_users b
where a.PARSING_USER_ID=b.user_id and a.DISK_READS>100 order by a.DISK_READS desc;

2.2 在V$SQL中選出最佔用資源的查詢
與V$SQLAREA類似
select * from
(select sql_text,rank() over (order by buffer_gets desc) as rank_buffers,to_char(100*ratio_to_report(buffer_gets) over (),'999.99') pct_bufgets from v$sql)
where rank_buffers <11

2.3 確定何時使用索引
² 當查詢條件只需要返回很少的行(受限列)時,則需要建立索引,不同的版本中這個返回要求不同
V5:20% V7:7% V8i,V9i:4% V10g: 5%
查看錶上的索引
select a.table_name,a.index_name,a.column_name,a.column_position,a.table_owner
from dba_ind_columns a
where a.table_owner='CLOUDSEA'

² 修正差的索引,可使用提示來限制很差的索引,如INDEX,FULL提示
² 在SELECT 和WHERE中的列使用索引
如: select name from tbl where no=?
建立索引:create index test on tbl(name,no) tablespace cloudsea_index storage(….)
對於系統中很關鍵的查詢,可以考慮建立此類連接索引

² 在一個表中有多個索引時可能出現麻煩,使用提示INDEX指定使用索引
² 使用索引合並,使用提示INDEX_JOIN
² 基於函數索引,由於使用了函數造成查詢很慢.必須基於成本的優化模式,參數:
QUERY_REWRITE_ENALED=TRUE
QUERY_REWRITE_INTEGRITY=TRUSTED (OR ENFORCED)
create index test on sum(test);

2.4 在內存中緩存表
將常用的相對小的表緩存到內存中,但注意會影響到嵌套循環連接上的驅動表
alter table tablename cache;

2.5 使用EXISTS 與嵌套子查詢 代替IN
SELECT …FROM EMP WHERE DEPT_NO NOT IN (SELECT DEPT_NO FROM DEPT WHERE DEPT_CAT=』A』);
(方法一: 高效)
SELECT ….FROM EMP A,DEPT B WHERE A.DEPT_NO = B.DEPT(+) AND B.DEPT_NO IS NULL AND B.DEPT_CAT(+) = 『A』
(方法二: 最高效)
SELECT ….FROM EMP E WHERE NOT EXISTS (SELECT 『X』 FROM DEPT D WHERE D.DEPT_NO = E.DEPT_NO AND DEPT_CAT = 『A』);

四、 使用STATSPACK和AWR報表調整等待和閂鎖

1. 10GR2里的腳本
在$ORACLE_HOME/RDBMS/ADMIN下

Spcreate.sql 通過調用spcusr.sql spctab.sql 和spcpkg.sql創建STATSPACK環境,使用SYSDBA運行它
Spdrop.sql 調用sptab.sql和spsr.sql刪除整個STATSPACK環境,使用SYSDBA運行它
Spreport.sql 這是生成報表的主要腳本,由PERFSTAT用戶運行
Sprepins.sql 為指定的資料庫和實例生成實例報表
Sprepsql.sql 為指定的SQL散列值生成SQL報表
Sprsqins.sql 為指定的資料庫和實例生成SQL報表
Spauto.sql 使用DBMS_JOB自動進行統計數據收集(照相)
Sprepcon.sql 配置SQLPLUS變數來設置像閾值這樣的內容的配置文件
Spurge.sql 刪除給定資料庫實例一定范圍內的快照ID,不刪除基線快照
Sptrunc.sql 截短STATSPACK表裡所有性能數據

五、 執行快速系統檢查1. 緩沖區命中率
查詢緩沖區命中率
select (1 - (sum(decode(name, 'physical reads',value,0)) /
(sum(decode(name, 'db block gets',value,0)) +
sum(decode(name, 'consistent gets',value,0))))) * 100 "Hit Ratio"
from v$sysstat;