1. 二級緩存是什麼意思
二級緩存是位於CPU與內存之間的臨時存儲器,它的容量比內存小但交換速度快。
CPU最初緩存只有一級,二級緩存出現是為了協調一級緩存與內存之間的速度。二級緩存比一級緩存速度更慢,容量更大,主要就是做一級緩存和內存之間數據臨時交換的地方用。
現在Intel和AMD處理器在一級緩存的邏輯結構設計上有所不同,所以二級緩存對CPU性能的影響也不盡相同。CPU讀取的數據(包括指令)中有80%的數據來自一級緩存,所以一級緩存的邏輯結構決定了CPU二級緩存容量對CPU性能的影響。
(1)二級緩存對人體有什麼影響擴展閱讀:
為了保證CPU訪問時有較高的命中率,緩存中的內容應該按一定的演算法替換。一種較常用的演算法是「最近最少使用演算法」(LRU演算法),它是將固定時間內最少被訪問過的行淘汰出局。
需要為每行設置一個計數器,LRU演算法是把命中行的計數器清零,其他各行計數器加1。當需要替換時淘汰行計數器計數值最大的數據行出局。這是一種高效、科學的演算法,其計數器清零過程可以把一些頻繁調用後再不需要的數據淘汰出緩存,提高緩存的利用率。
2. 筆記本電腦一,二,三級緩存,有什麼區別與影響
CPU緩存可以分為一級緩存,二級緩存,如今主流CPU還有三級緩存,甚至有些CPU還有四級緩存。每一級緩存中所儲存的全部數據都是下一級緩存的一部分,這三種緩存的技術難度和製造成本是相對遞減的,所以其容量也是相對遞增的。
為什麼CPU會有L1、L2、L3這樣的緩存設計?主要是因為現在的處理器太快了,而從內存中讀取數據實在太慢(一個是因為內存本身速度不夠,另一個是因為它離CPU太遠了,總的來說需要讓CPU等待幾十甚至幾百個時鍾周期),這個時候為了保證CPU的速度,就需要延遲更小速度更快的內存提供幫助,而這就是緩存。
當CPU要讀取一個數據時,首先從一級緩存中查找,如果沒有找到再從二級緩存中查找,如果還是沒有就從三級緩存或內存中查找。一般來說,每級緩存的命中率大概都在80%左右,也就是說全部數據量的80%都可以在一級緩存中找到,只剩下20%的總數據量才需要從二級緩存、三級緩存或內存中讀取,由此可見一級緩存是整個CPU緩存架構中最為重要的部分。希望採納
3. 電腦的二級緩存具體有什麼用對電腦運行速度有何影響
二級緩存(L2 CACHE)出現是為了協調一級緩存與內存之間的速度。最初緩存只有一級,後來處理器速度又提升了,一級緩存不夠用了,於是就添加了二級緩存。二級緩存是比一級緩存速度更慢,容量更大的內存,主要就是做一級緩存和內存之間數據臨時交換的地方用。二級緩存又叫L2 CACHE,它是處理器內部的一些緩沖存儲器,其作用跟內存一樣。 它是怎麼出現的呢? 要上溯到上個世紀80年代,由於處理器的運行速度越來越快,慢慢地,處理器需要從內存中讀取數據的速度需求就越來越高了。然而內存的速度提升速度卻很緩慢,而能高速讀寫數據的內存價格又非常高昂,不能大量採用。從性能價格比的角度出發,英特爾等處理器設計生產公司想到一個辦法,就是用少量的高速內存和大量的低速內存結合使用,共同為處理器提供數據。這樣就兼顧了性能和使用成本的最優。而那些高速的內存因為是處於CPU和內存之間的位置,又是臨時存放數據的地方,所以就叫做緩沖存儲器了,簡稱「緩存」。
作用
它的作用就像倉庫中臨時堆放貨物的地方一樣,貨物從運輸車輛上放下時臨時堆放在緩存區中,然後再搬到內部存儲區中長時間存放。貨物在這段區域中存放的時間很短,就是一個臨時貨場。現在,為了適應速度更快的處理器P4EE,已經出現了三級緩存了,它的容量更大,速度相對二級緩存也要慢一些,但是比內存可快多了。 緩存的出現使得CPU處理器的運行效率得到了大幅度的提升,這個區域中存放的都是CPU頻繁要使用的數據,所以緩存越大處理器效率就越高,同時由於緩存的物理結構比內存復雜很多,所以其成本也很高。
大量使用二級緩存帶來的結果是處理器運行效率的提升和成本價格的大幅度不等比提升。舉個例子,伺服器上用的至強處理器和普通的P4處理器其內核基本上是一樣的,就是二級緩存不同。至強的二級緩存是2MB~16MB,P4的二級緩存是512KB,於是最便宜的至強也比最貴的P4貴,原因就在二級緩存不同。
即L2 Cache。由於L1級高速緩存容量的限制,為了再次提高CPU的運算速度,在CPU外部放置一高速存儲器,即二級緩存。工作主頻比較靈活,可與CPU同頻,也可不同。CPU在讀取數據時,先在L1中尋找,再從L2尋找,然後是內存,在後是外存儲器。所以L2對系統的影響也不容忽視。
CPU緩存
CPU緩存(Cache Memory)位於CPU與內存之間的臨時存儲器,它的容量比內存小但交換速度快。在緩存中的數據是內存中的一小部分,但這一小部分是短時間內CPU即將訪問的,當CPU調用大量數據時,就可避開內存直接從緩存中調用,從而加快讀取速度。由此可見,在CPU中加入緩存是一種高效的解決方案,這樣整個內存儲器(緩存+內存)就變成了既有緩存的高速度,又有內存的大容量的存儲系統了。緩存對CPU的性能影響很大,主要是因為CPU的數據交換順序和CPU與緩存間的帶寬引起的。
[編輯本段]緩存的工作原理
工作原理
緩存的工作原理是當CPU要讀取一個數據時,首先從緩存中查找,如果找到就立即讀取並送給CPU處理;如果沒有找到,就用相對慢的速度從內存中讀取並送給CPU處理,同時把這個數據所在的數據塊調入緩存中,可以使得以後對整塊數據的讀取都從緩存中進行,不必再調用內存。
正是這樣的讀取機制使CPU讀取緩存的命中率非常高(大多數CPU可達90%左右),也就是說CPU下一次要讀取的數據90%都在緩存中,只有大約10%需要從內存讀取。這大大節省了CPU直接讀取內存的時間,也使CPU讀取數據時基本無需等待。總的來說,CPU讀取數據的順序是先緩存後內存。
最早先的CPU緩存是個整體的,而且容量很低,英特爾公司從Pentium時代開始把緩存進行了分類。當時集成在CPU內核中的緩存已不足以滿足CPU的需求,而製造工藝上的限制又不能大幅度提高緩存的容量。因此出現了集成在與CPU同一塊電路板上或主板上的緩存,此時就把 CPU內核集成的緩存稱為一級緩存,而外部的稱為二級緩存。一級緩存中還分數據緩存(Data Cache,D-Cache)和指令緩存(Instruction Cache,I-Cache)。二者分別用來存放數據和執行這些數據的指令,而且兩者可以同時被CPU訪問,減少了爭用Cache所造成的沖突,提高了處理器效能。英特爾公司在推出Pentium 4處理器時,用新增的一種一級追蹤緩存替代指令緩存,容量為12KμOps,表示能存儲12K條微指令。
隨著CPU製造工藝的發展,二級緩存也能輕易的集成在CPU內核中,容量也在逐年提升。現在再用集成在CPU內部與否來定義一、二級緩存,已不確切。而且隨著二級緩存被集成入CPU內核中,以往二級緩存與CPU大差距分頻的情況也被改變,此時其以相同於主頻的速度工作,可以為CPU提供更高的傳輸速度。
二級緩存是CPU性能表現的關鍵之一,在CPU核心不變化的情況下,增加二級緩存容量能使性能大幅度提高。而同一核心的CPU高低端之分往往也是在二級緩存上有差異,由此可見二級緩存對於CPU的重要性。
緩存的利用率
CPU在緩存中找到有用的數據被稱為命中,當緩存中沒有CPU所需的數據時(這時稱為未命中),CPU才訪問內存。從理論上講,在一顆擁有二級緩存的CPU中,讀取一級緩存的命中率為80%。也就是說CPU一級緩存中找到的有用數據占數據總量的80%,剩下的20%從二級緩存中讀取。由於不能准確預測將要執行的數據,讀取二級緩存的命中率也在80%左右(從二級緩存讀到有用的數據占總數據的16%)。那麼還有的數據就不得不從內存調用,但這已經是一個相當小的比例了。目前的較高端的CPU中,還會帶有三級緩存,它是為讀取二級緩存後未命中的數據設計的—種緩存,在擁有三級緩存的CPU中,只有約5%的數據需要從內存中調用,這進一步提高了CPU的效率。
為了保證CPU訪問時有較高的命中率,緩存中的內容應該按一定的演算法替換。一種較常用的演算法是「最近最少使用演算法」(LRU演算法),它是將最近一段時間內最少被訪問過的行淘汰出局。因此需要為每行設置一個計數器,LRU演算法是把命中行的計數器清零,其他各行計數器加1。當需要替換時淘汰行計數器計數值最大的數據行出局。這是一種高效、科學的演算法,其計數器清零過程可以把一些頻繁調用後再不需要的數據淘汰出緩存,提高緩存的利用率。
CPU產品中,一級緩存的容量基本在4KB到64KB之間,二級緩存的容量則分為128KB、256KB、512KB、1MB、2MB等。一級緩存容量各產品之間相差不大,而二級緩存容量則是提高CPU性能的關鍵。二級緩存容量的提升是由CPU製造工藝所決定的,容量增大必然導致CPU內部晶體管數的增加,要在有限的CPU面積上集成更大的緩存,對製造工藝的要求也就越高
緩存(Cache)大小是CPU的重要指標之一,其結構與大小對CPU速度的影響非常大。簡單地講,緩存就是用來存儲一些常用或即將用到的數據或指令,當需要這些數據或指令的時候直接從緩存中讀取,這樣比到內存甚至硬碟中讀取要快得多,能夠大幅度提升CPU的處理速度。
處理器緩存
所謂處理器緩存,通常指的是二級高速緩存,或外部高速緩存。即高速緩沖存儲器,是位於CPU和主存儲器DRAM(Dynamic RAM)之間的規模較小的但速度很高的存儲器,通常由SRAM(靜態隨機存儲器)組成。用來存放那些被CPU頻繁使用的數據,以便使CPU不必依賴於速度較慢的DRAM(動態隨機存儲器)。L2高速緩存一直都屬於速度極快而價格也相當昂貴的一類內存,稱為SRAM(靜態RAM),SRAM(Static RAM)是靜態存儲器的英文縮寫。由於SRAM採用了與製作CPU相同的半導體工藝,因此與動態存儲器DRAM比較,SRAM的存取速度快,但體積較大,價格很高。
處理器緩存的基本思想是用少量的SRAM作為CPU與DRAM存儲系統之間的緩沖區,即Cache系統。80486以及更高檔微處理器的一個顯著特點是處理器晶元內集成了SRAM作為Cache,由於這些Cache裝在晶元內,因此稱為片內Cache。486晶元內Cache的容量通常為8K。高檔晶元如Pentium為16KB,Power PC可達32KB。Pentium微處理器進一步改進片內Cache,採用數據和雙通道Cache技術,相對而言,片內Cache的容量不大,但是非常靈活、方便,極大地提高了微處理器的性能。片內Cache也稱為一級Cache。由於486,586等高檔處理器的時鍾頻率很高,一旦出現一級Cache未命中的情況,性能將明顯惡化。在這種情況下採用的辦法是在處理器晶元之外再加Cache,稱為二級Cache。二級Cache實際上是CPU和主存之間的真正緩沖。由於系統板上的響應時間遠低於CPU的速度,如果沒有二級Cache就不可能達到486,586等高檔處理器的理想速度。二級Cache的容量通常應比一級Cache大一個數量級以上。在系統設置中,常要求用戶確定二級Cache是否安裝及尺寸大小等。二級Cache的大小一般為128KB、256KB或512KB。在486以上檔次的微機中,普遍採用256KB或512KB同步Cache。所謂同步是指Cache和CPU採用了相同的時鍾周期,以相同的速度同步工作。相對於非同步Cache,性能可提高30%以上。
緩存的應用
目前,PC及其伺服器系統的發展趨勢之一是CPU主頻越做越高,系統架構越做越先進,而主存DRAM的結構和存取時間改進較慢。因此,緩存(Cache)技術愈顯重要,在PC系統中Cache越做越大。廣大用戶已把Cache做為評價和選購PC系統的一個重要指標。
現在的CPU普遍有一級緩存和二級緩存。一般來說,一級緩存的數量比較少,而二級緩存的數量一般比一級緩存大幾倍。為什麼要緩存呢,這主要是CPU廠家為了提高CPU的使用效率。因為,隨著CPU的速度的快速發展,目前的CPU速度已經達到一個令人驚訝的速度,據個例子來說,一個奔騰3-1G的CPU其運算速度為每秒鍾能夠完成10億次二進制計算,而一個奔騰4-3G則意味著每秒鍾能夠完成30億次二進制運算。當然由於CPU還要介入浮點數據轉換和介入控制主板上的其他設備資源,實際真正用於數據處理的資源會受到較大影響,但總體來說,CPU的速度已經達到一個前所未有的程度。由於其他硬體在數據傳輸方面未能跟上,因此,CPU廠家就在CPU內封裝了緩存,其中,一級緩存主要將CPU的硬指令長期存儲,以便CPU在調用指令時不必再通過與內存交換數據來取得,另外,還將最近處理的進程數據(中間數據)存放在一級緩存;而二級緩存則是完全存放最近處理的進程數據(中間數據)和即將調用的數據。通過這樣一來設置,就可以避免CPU運算過程中要頻繁與內存交換數據,減少CPU的等待時間,提高CPU的利用效率。
[編輯本段]相關影響
二級緩存容量對CPU性能的影響
CPU二級緩存作為一級緩存的「後備倉庫」,用於為一級緩存存儲更多的數據,減少CPU直接訪問內存 的次數。理論上,CPU訪問並調用緩存的數據所佔的比重越大,則CPU訪問並調用內存的數據所佔的比重就越小,那麼因訪問內存而耽誤的時間 就越少。所以緩存的容量越大,CPU的實際效率也就越高,性能就越強。
Intel和AMD處理器的差異
實際上,現在Intel和AMD處理器在一級緩存的邏輯結構設計上有所不同,所以二級緩存對CPU性能的影響也不盡相同。因為CPU讀取的 數據(包括指令)中有80%的數據來自一級緩存,所以一級緩存的邏輯結構決定了CPU二級緩存容量對CPU性能的影響。Intel的Pentium 4及Celeron系列處理器的一級數據緩存被稱為「數據代碼指令追蹤(讀寫)緩存」;AMD的Athlon 64/Athlon XP/Sempron/Duron系列處理器 的一級數據緩存叫作「實數據讀寫緩存」。
這兩類CPU一級緩存不同的邏輯結構有什麼不同?下面用一個例子來描述。
假設有一個運算任務,要從「1」一直遞加到「999999」。在傳統的「實數據讀寫緩存」架構下,這一系列數據中最先用到的數據(如 「1、2……449、450」)將存儲在CPU一級數據緩存中,更多的數據(如「451、452……899999、900000」)存儲在CPU二級緩存中,其餘的數 據(如「900001、999002……999998、999999」)暫存在內存中,CPU將按照一級數據緩存、二級緩存和內存的順序讀取這些數據。
「數據代碼指令追蹤緩存」架構的一級數據緩存的存儲方式
在「數據代碼指令追蹤緩存」架構的CPU中,一級數據緩存並不存儲這些最先用到的數據(「1、2……449、450」),而是將這些 數據存儲到二級緩存中,一級數據緩存僅僅存儲這些數據在二級緩存中的起止地址(又稱為:指令代碼)。例如,數據「1、2……449、450」 順序存儲在二級緩存中,數據「1」所在地址為「00001F」,數據「450」 所在地址為「00451F」,實際上一級數據緩存只需要存儲「00001F」和「00451F」這兩個地址就可以了,而不需要存儲大量的數據。
但是由於其一級數據緩存不存儲數據,數據存儲在二級緩存中,因此對二級緩存容量的依賴非常大,所以CPU需要更大的二級緩存容量 才能發揮出應有的性能。在實際應用中,CPU處理的數據中大多數都是0KB~128KB大小的數據,128KB~256KB的數據約有10%,256KB~512KB的 數據有5%,512KB~1MB的數據僅有3%左右。所以對於這種CPU來說,二級緩存容量從0KB增加到256KB對CPU性能的提高幾乎是直線性的;增加 到512KB對CPU性能的提高稍微小一些;從512KB增加到1MB,普通用戶就很難體會到CPU性能有提高了。正因為如此,大家能感受到Pentium 4 C(512KB二級緩存)與Celeron(128KB二級緩存)的性能差異,卻很難感受到Pentium 4 C(512KB二級緩存)與Pentium 4 E(1MB二級緩存)的性能差異了。
[編輯本段]二級緩存-發展
雙核心CPU的二級緩存
CPU產品中,一級緩存的容量基本在4KB到64KB之間,二級緩存的容量則分為128KB、256KB、512KB、1MB、2MB等。一級緩存容量各產品之間相差不大,而二級緩存容量則是提高CPU性能的關鍵。二級緩存容量的提升是由CPU製造工藝所決定的,容量增大必然導致CPU內部晶體管數的增加,要在有限的CPU面積上集成更大的緩存,對製造工藝的要求也就越高。
雙核心CPU的二級緩存比較特殊,和以前的單核心CPU相比,最重要的就是兩個內核的緩存所保存的數據要保持一致,否則就會出現錯誤,為了解決這個問題不同的CPU使用了不同的辦法:
Intel雙核心處理器的二級緩存
目前Intel的雙核心CPU主要有Pentium D、Pentium EE、Core Duo三種,其中Pentium D、Pentium EE的二級緩存方式完全相同。Pentium D和Pentium EE的二級緩存都是CPU內部兩個內核具有互相獨立的二級緩存,其中,8xx系列的Smithfield核心CPU為每核心1MB,而9xx系列的Presler核心CPU為每核心2MB。這種CPU內部的兩個內核之間的緩存數據同步是依靠位於主板北橋晶元上的仲裁單元通過前端匯流排在兩個核心之間傳輸來實現的,所以其數據延遲問題比較嚴重,性能並不盡如人意。
Core Duo使用的核心為Yonah,它的二級緩存則是兩個核心共享2MB的二級緩存,共享式的二級緩存配合Intel的「Smart cache」共享緩存技術,實現了真正意義上的緩存數據同步,大幅度降低了數據延遲,減少了對前端匯流排的佔用,性能表現不錯,是目前雙核心處理器上最先進的二級緩存架構。今後Intel的雙核心處理器的二級緩存都會採用這種兩個內核共享二級緩存的「Smart cache」共享緩存技術。
AMD雙核心處理器的二級緩存
Athlon 64 X2 CPU的核心主要有Manchester和Toledo兩種,他們的二級緩存都是CPU內部兩個內核具有互相獨立的二級緩存,其中,Manchester核心為每核心512KB,而Toledo核心為每核心1MB。處理器內部的兩個內核之間的緩存數據同步是依靠CPU內置的System Request Interface(系統請求介面,SRI)控制,傳輸在CPU內部即可實現。這樣一來,不但CPU資源佔用很小,而且不必佔用內存匯流排資源,數據延遲也比Intel的Smithfield核心和Presler核心大為減少,協作效率明顯勝過這兩種核心。不過,由於這種方式仍然是兩個內核的緩存相互獨立,從架構上來看也明顯不如以Yonah核心為代表的Intel的共享緩存技術Smart Cache。
[編輯本段]存儲方式
傳統的一級數據緩存的存儲方式
但是在「數據代碼指令追蹤緩存」架構的CPU中,一級數據緩存並不存儲這些最先用到的數據(「1、2……449、450」),而是將這些 數據存儲到二級緩存中,一級數據緩存僅僅存儲這些數據在二級緩存中的起止地址(又稱為:指令代碼)。例如,數據「1、2……449、450」 順序存儲在二級緩存中,數據「1」所在地址為「00001F」,數據「450」 所在地址為「00451F」,實際上一級數據緩存只需要存儲「00001F」和「00451F」這兩個地址就可以了,而不需要存儲大量的數據。
數據代碼指令追蹤緩存
「數據代碼指令追蹤緩存」架構的一級數據緩存的存儲方式
但是由於其一級數據緩存不存儲數據,數據存儲在二級緩存中,因此對二級緩存容量的依賴非常大,所以CPU需要更大的二級緩存容量 才能發揮出應有的性能。在實際應用中,CPU處理的數據中大多數都是0KB~128KB大小的數據,128KB~256KB的數據約有10%,256KB~512KB的 數據有5%,512KB~1MB的數據僅有3%左右。所以對於這種CPU來說,二級緩存容量從0KB增加到256KB對CPU性能的提高幾乎是直線性的;增加 到512KB對CPU性能的提高稍微小一些;從512KB增加到1MB,普通用戶就很難體會到CPU性能有提高了。正因為如此,大家能感受到Pentium 4 C(512KB二級緩存)與Celeron(128KB二級緩存)的性能差異,卻很難感受到Pentium 4 C(512KB二級緩存)與Pentium 4 E(1MB二級緩存)的性能差異了。
4. 平板電腦的二級緩存對使用(尤其是玩游戲)有何影響
一般計算機處理器時鍾周期比內存短很多,這樣就需要緩存預先讀取一些內存數據備用(所以一級緩存也分為指令和數據,指令緩存用於儲存運行的指令,數據緩存存儲要處理的數據),一級緩存一般不夠,所以需要二級緩存來補充。AMD和Intel對緩存的理解不同,架構也不同,所以奔四時代AMD的二級緩存容量遠不及同性能的Intel,但一級緩存又是Intel處理器的數倍。
緩存小意味著預讀內存數據也少,在其中沒找到需要的數據的概率就高,此時CPU就要若干時鍾周期來等待內存的讀入,也因此導致了速度的減慢。游戲因為架構等原因,對二級緩存的需求比辦公軟體等要高。
5. 什麼叫二級緩存
二級緩存又叫L2 CACHE,它是處理器內部的一些緩沖存儲器,其作用跟內存一樣。 它是怎麼出現的呢? 要上溯到上個世紀80年代,由於處理器的運行速度越來越快,慢慢地,處理器需要從內存中讀取數據的速度需求就越來越高了。然而內存的速度提升速度卻很緩慢,而能高速讀寫數據的內存價格又非常高昂,不能大量採用。從性能價格比的角度出發,英特爾等處理器設計生產公司想到一個辦法,就是用少量的高速內存和大量的低速內存結合使用,共同為處理器提供數據。這樣就兼顧了性能和使用成本的最優。而那些高速的內存因為是處於CPU和內存之間的位置,又是臨時存放數據的地方,所以就叫做緩沖存儲器了,簡稱「緩存」。它的作用就像倉庫中臨時堆放貨物的地方一樣,貨物從運輸車輛上放下時臨時堆放在緩存區中,然後再搬到內部存儲區中長時間存放。貨物在這段區域中存放的時間很短,就是一個臨時貨場。 最初緩存只有一級,後來處理器速度又提升了,一級緩存不夠用了,於是就添加了二級緩存。二級緩存是比一級緩存速度更慢,容量更大的內存,主要就是做一級緩存和內存之間數據臨時交換的地方用。現在,為了適應速度更快的處理器P4EE,已經出現了三級緩存了,它的容量更大,速度相對二級緩存也要慢一些,但是比內存可快多了。 緩存的出現使得CPU處理器的運行效率得到了大幅度的提升,這個區域中存放的都是CPU頻繁要使用的數據,所以緩存越大處理器效率就越高,同時由於緩存的物理結構比內存復雜很多,所以其成本也很高。
大量使用二級緩存帶來的結果是處理器運行效率的提升和成本價格的大幅度不等比提升。舉個例子,伺服器上用的至強處理器和普通的P4處理器其內核基本上是一樣的,就是二級緩存不同。至強的二級緩存是2MB~16MB,P4的二級緩存是512KB,於是最便宜的至強也比最貴的P4貴,原因就在二級緩存不同。
即L2 Cache。由於L1級高速緩存容量的限制,為了再次提高CPU的運算速度,在CPU外部放置一高速存儲器,即二級緩存。工作主頻比較靈活,可與CPU同頻,也可不同。CPU在讀取數據時,先在L1中尋找,再從L2尋找,然後是內存,在後是外存儲器。所以L2對系統的影響也不容忽視。
CPU緩存(Cache Memory)位於CPU與內存之間的臨時存儲器,它的容量比內存小但交換速度快。在緩存中的數據是內存中的一小部分,但這一小部分是短時間內CPU即將訪問的,當CPU調用大量數據時,就可避開內存直接從緩存中調用,從而加快讀取速度。由此可見,在CPU中加入緩存是一種高效的解決方案,這樣整個內存儲器(緩存+內存)就變成了既有緩存的高速度,又有內存的大容量的存儲系統了。緩存對CPU的性能影響很大,主要是因為CPU的數據交換順序和CPU與緩存間的帶寬引起的。
緩存的工作原理是當CPU要讀取一個數據時,首先從緩存中查找,如果找到就立即讀取並送給CPU處理;如果沒有找到,就用相對慢的速度從內存中讀取並送給CPU處理,同時把這個數據所在的數據塊調入緩存中,可以使得以後對整塊數據的讀取都從緩存中進行,不必再調用內存。
正是這樣的讀取機制使CPU讀取緩存的命中率非常高(大多數CPU可達90%左右),也就是說CPU下一次要讀取的數據90%都在緩存中,只有大約10%需要從內存讀取。這大大節省了CPU直接讀取內存的時間,也使CPU讀取數據時基本無需等待。總的來說,CPU讀取數據的順序是先緩存後內存。
最早先的CPU緩存是個整體的,而且容量很低,英特爾公司從Pentium時代開始把緩存進行了分類。當時集成在CPU內核中的緩存已不足以滿足CPU的需求,而製造工藝上的限制又不能大幅度提高緩存的容量。因此出現了集成在與CPU同一塊電路板上或主板上的緩存,此時就把 CPU內核集成的緩存稱為一級緩存,而外部的稱為二級緩存。一級緩存中還分數據緩存(Data Cache,D-Cache)和指令緩存(Instruction Cache,I-Cache)。二者分別用來存放數據和執行這些數據的指令,而且兩者可以同時被CPU訪問,減少了爭用Cache所造成的沖突,提高了處理器效能。英特爾公司在推出Pentium 4處理器時,用新增的一種一級追蹤緩存替代指令緩存,容量為12KμOps,表示能存儲12K條微指令。
隨著CPU製造工藝的發展,二級緩存也能輕易的集成在CPU內核中,容量也在逐年提升。現在再用集成在CPU內部與否來定義一、二級緩存,已不確切。而且隨著二級緩存被集成入CPU內核中,以往二級緩存與CPU大差距分頻的情況也被改變,此時其以相同於主頻的速度工作,可以為CPU提供更高的傳輸速度。
二級緩存是CPU性能表現的關鍵之一,在CPU核心不變化的情況下,增加二級緩存容量能使性能大幅度提高。而同一核心的CPU高低端之分往往也是在二級緩存上有差異,由此可見二級緩存對於CPU的重要性。
CPU在緩存中找到有用的數據被稱為命中,當緩存中沒有CPU所需的數據時(這時稱為未命中),CPU才訪問內存。從理論上講,在一顆擁有二級緩存的CPU中,讀取一級緩存的命中率為80%。也就是說CPU一級緩存中找到的有用數據占數據總量的80%,剩下的20%從二級緩存中讀取。由於不能准確預測將要執行的數據,讀取二級緩存的命中率也在80%左右(從二級緩存讀到有用的數據占總數據的16%)。那麼還有的數據就不得不從內存調用,但這已經是一個相當小的比例了。目前的較高端的CPU中,還會帶有三級緩存,它是為讀取二級緩存後未命中的數據設計的—種緩存,在擁有三級緩存的CPU中,只有約5%的數據需要從內存中調用,這進一步提高了CPU的效率。
為了保證CPU訪問時有較高的命中率,緩存中的內容應該按一定的演算法替換。一種較常用的演算法是「最近最少使用演算法」(LRU演算法),它是將最近一段時間內最少被訪問過的行淘汰出局。因此需要為每行設置一個計數器,LRU演算法是把命中行的計數器清零,其他各行計數器加1。當需要替換時淘汰行計數器計數值最大的數據行出局。這是一種高效、科學的演算法,其計數器清零過程可以把一些頻繁調用後再不需要的數據淘汰出緩存,提高緩存的利用率。
CPU產品中,一級緩存的容量基本在4KB到64KB之間,二級緩存的容量則分為128KB、256KB、512KB、1MB、2MB等。一級緩存容量各產品之間相差不大,而二級緩存容量則是提高CPU性能的關鍵。二級緩存容量的提升是由CPU製造工藝所決定的,容量增大必然導致CPU內部晶體管數的增加,要在有限的CPU面積上集成更大的緩存,對製造工藝的要求也就越高
6. 二級緩存小了一般對什麼影響較大也就是說二級緩存的作用是什麼
二級緩存是CPU性能表現的關鍵之一,在CPU核心不變化的情況下,增加二級緩存容量能使性能大幅度提高
7. 什麼是二級緩存 二級緩存起什麼重要作用
二級緩存是CPU的第二層高速緩存,分內部和外部兩種晶元。內部的晶元二級緩存運行速度與主頻相同,而外部的二級緩存則只有主頻的一半。L2高速緩存容量也會影響CPU的性能,原則是越大越好
能明白了吧!!!!
8. 二級緩存的作用是什麼
緩存在cpu與內存之間,容量比cpu中寄存器大,速度比內存快,這樣把內存中活躍的部分復制到緩存里,cpu就可以從緩存中高速的調用(從緩存中調入比從內存中調入快多了)
這就是緩存的工作原理,至於二級緩存,同理吧,多一級緩存應該是增加了容量
自己寫的,不想做不厚道的人,但你覺得不夠周到的話請看以下鏈接
http://..com/question/2145245.html