當前位置:首頁 » 硬碟大全 » 硬碟磁頭結構
擴展閱讀
webinf下怎麼引入js 2023-08-31 21:54:13
堡壘機怎麼打開web 2023-08-31 21:54:11

硬碟磁頭結構

發布時間: 2022-07-18 18:37:54

① 電腦硬碟的構造

結構
硬碟(hard disk)是計算機中最重要的存儲器之一。計算機需要正常運行所需的大部分軟體都存儲在硬碟上。因為硬碟存儲的容量較大,區別於內存、光碟。硬碟是電腦上使用使用堅硬的旋轉碟片為基礎的存儲設備。它在平整的磁性表面存儲和檢索數字數據。

物理結構

磁頭是硬碟中最昂貴的部件,也是硬碟技術中最重要和最關鍵的一環。傳統的磁頭是讀寫合一的電磁感應式磁頭,但是,硬碟的讀、寫卻是兩種截然不同的操作,為此,這種二合一磁頭在設計時必須要同時兼顧到讀/寫兩種特性,從而造成了硬碟設計上的局限。

硬碟
而MR磁頭(Magnetoresistive heads),即磁阻磁頭,採用的是分離式的磁頭結構:寫入磁頭仍採用傳統的磁感應磁頭(MR磁頭不能進行寫操作),讀取磁頭則採用新型的MR磁頭,即所謂的感應寫、磁阻讀。這樣,在設計時就可以針對兩者的不同特性分別進行優化,以得到最好的讀/寫性能。另外,MR磁頭是通過阻值變化而不是電流變化去感應信號幅度,因而對信號變化相當敏感,讀取數據的准確性也相應提高。而且由於讀取的信號幅度與磁軌寬度無關,故磁軌可以做得很窄,從而提高了碟片密度,達到200MB/英寸2,而使用傳統的磁頭只能達到20MB/英寸2,這也是MR磁頭被廣泛應用的最主要原因。MR磁頭已得到廣泛應用,而採用多層結構和磁阻效應更好的材料製作的GMR磁頭(Giant Magnetoresistive heads)也逐漸普及。

磁軌

當磁碟旋轉時,磁頭若保持在一個位置上,則每個磁頭都會在磁碟表面劃出一個圓形軌跡,這些圓形軌跡就叫做磁軌。這些磁軌用肉眼是根本看不到的,因為它們僅是盤面上以特殊方式磁化了的一些磁化區,

垂直記錄時磁顆粒狀態表示
磁碟上的信息便是沿著這樣的軌道存放的。相鄰磁軌之間並不是緊挨著的,這是因為磁化單元相隔太近時磁性會相互產生影響,同時也為磁頭的讀寫帶來困難。一張1.44MB的3.5英寸軟盤,一面有80個磁軌,而硬碟上的磁軌密度則遠遠大於此值,通常一面有成千上萬個磁軌。

磁碟表面塗有做為紀錄使用的磁性介質,其在顯微鏡下呈現出來的便是一個個磁顆粒。微小的磁顆粒極性可以被磁頭快速的改變,並且在改變之後可以穩定的保持,系統通過磁通量以及磁阻的變化來分辨二進制中的0或者1。也正是因為所有的操作均是在微觀情況下進行,所以如果硬碟在高速運行的同時受到外力的震盪,將會有可能因為磁頭拍擊磁碟表面而造成不可挽回的數據損失。除此之外,磁顆粒的單軸異向性和體積會明顯的磁顆粒的熱穩定性,而熱穩定性的高低則決定了磁顆粒狀態的穩定性,也就是決定了所儲存數據的正確性和穩定性。但是,磁顆粒的單軸異向性和體積也不能一味地提高,它們受限於磁頭能提供的寫入場以及介質信噪比的限制。

扇區

磁碟上的每個磁軌被等分為若干個弧段,這些弧段便是磁碟的扇區,每個扇區可以存放512個位元組的信息,磁碟驅動器在向磁碟讀取和寫入數據時,要以扇區為單位。1.44MB3.5英寸的軟盤,每個磁軌分為18個扇區。

柱面

硬碟通常由重疊的一組碟片構成,每個盤面都被劃分為數目相等的磁軌,並從外緣的「0」開始編號,具有相同編號的磁軌形成一個圓柱,稱之為磁碟的柱面。磁碟的柱面數與一個盤面上的磁軌數是相等的。由於每個盤面都有自己的磁頭,因此,盤面數等於總的磁頭數。所謂硬碟的CHS,即Cylinder(柱面)、Head(磁頭)、Sector(扇區),只要知道了硬碟的CHS的數目,即可確定硬碟的容量,硬碟的容量=柱面數磁頭數扇區數512B。

邏輯結構

硬碟的容量還非常小的時候,人們採用與軟盤類似的結構生產硬碟。也就是硬碟碟片的每一條磁軌都具有相同的扇區數。由此產生了所謂的3D參數 (Disk Geometry). 既磁頭數(Heads),柱面數(Cylinders),扇區數(Sectors),以及相應的定址方式。

其中:磁頭數(Heads)表示硬碟總共有幾個磁頭,也就是有幾面碟片, 最大為 255 (用 8 個二進制位存儲);柱面數(Cylinders) 表示硬碟每一面碟片上有幾條磁軌,最大為 1023(用 10 個二進制位存儲);每個扇區一般是 512個位元組, 理論上講這不是必須的,但好像沒有取別的值的。所以磁碟最大容量為:255 * 1023 * 63 * 512 / 1048576 = 8024 GB ( 1M =1048576 Bytes )或硬碟廠商常用的單位:255 * 1023 * 63 * 512 / 1000000 = 8414 GB ( 1M =1000000 Bytes )

在 CHS定址方式中,磁頭,柱面,扇區的取值范圍分別為 0到 Heads - 1。0 到 Cylinders - 1。 1 到 Sectors (注意是從 1 開始)。

基本 Int 13H 調用簡介

BIOS Int 13H 調用是 BIOS提供的磁碟基本輸入輸出中斷調用,它可以完成磁碟(包括硬碟和軟盤)的復位,讀寫,校驗,定位,診,格式化等功能。它使用的就是CHS 定址方式, 因此最大識能訪問 8 GB 左右的硬碟 (本文中如不作特殊說明,均以 1M = 1048576 位元組為單位)。

② 硬碟物理結構磁頭

磁頭是硬碟中最昂貴的部件,也是硬碟技術中最重要和最關鍵的一環。傳統的磁頭是讀寫合一的電磁感應式磁頭,但是,硬碟的讀、寫卻是兩種截然不同的操作,為此,這種二合一磁頭在設計時必須要同時兼顧到讀/寫兩種特性,從而造成了硬碟設計上的局限。而MR磁頭(Magnetoresistive heads),即磁阻磁頭,採用的是分離式的磁頭結構:寫入磁頭仍採用傳統的磁感應磁頭(MR磁頭不能進行寫操作),讀取磁頭則採用新型的MR磁頭,即所謂的感應寫、磁阻讀。這樣,在設計時就可以針對兩者的不同特性分別進行優化,以得到最好的讀/寫性能。另外,MR磁頭是通過阻值變化而不是電流變化去感應信號幅度,因而對信號變化相當敏感,讀取數據的准確性也相應提高。而且由於讀取的信號幅度與磁軌寬度無關,故磁軌可以做得很窄,從而提高了碟片密度,達到200MB/英寸2,而使用傳統的磁頭只能達到20MB/英寸2,這也是MR磁頭被廣泛應用的最主要原因。目前,MR磁頭已得到廣泛應用,而採用多層結構和磁阻效應更好的材料製作的GMR磁頭(Giant Magnetoresistive heads)也逐漸普及。

③ 硬碟的磁頭是什麼

硬碟磁頭是硬碟讀取數據的關鍵部件,它的主要作用就是將存儲在硬碟碟片上的磁信息轉化為電信號向外傳輸,而它的工作原理則是利用特殊材料的電阻值會隨著磁場變化的原理來讀寫碟片上的數據,磁頭的好壞在很大程度上決定著硬碟碟片的存儲密度。目前比較常用的是GMR(Giant
Magneto
Resisive)巨磁阻磁頭,GMR磁頭的使用了磁阻效應更好的材料和多層薄膜結構,這比以前的傳統磁頭和MR(Magneto
Resisive)磁阻磁頭更為敏感,相對的磁場變化能引起來大的電阻值變化,從而實現更高的存儲密度

磁頭是硬碟中對碟片進行讀寫工作的工具,是硬碟中最精密的部位之一。磁頭是用線圈纏繞在磁芯上製成的。硬碟在工作時,磁頭通過感應旋轉的碟片上磁場的變化來讀取數據;通過改變碟片上的磁場來寫入數據。為避免磁頭和碟片的磨損,在工作狀態時,磁頭懸浮在高速轉動的碟片上方,而不與碟片直接接觸,只有在電源關閉之後,磁頭會自動回到在碟片上的固定位置(稱為著陸區,此處碟片並不存儲數據,是碟片的起始位置)。
由於磁頭工作的性質,對其磁感應敏感度和精密度的要求都非常高。早先的磁頭採用鐵磁性物質,在磁感應敏感度上不是很理想,因此早期的硬碟單碟容量都比較低,單碟容量大則碟片上磁軌密度大,磁頭感應程度不夠,就無法准確讀出數據。這就造成早期的硬碟容量都很有限。隨著技術的發展,磁頭在磁感應敏感度和精密度方面都有了長足的進步。
最初磁頭是讀、寫功能一起的,這對磁頭的製造工藝、技術都要求很高,而對於個人電腦來說,在與硬碟交換數據的過程中,讀取數據遠遠快於寫入數據,讀、寫操作二者的特性也完全不同,這也就導致了讀、寫分離的磁頭,二者分別工作、各不幹擾。
資料來源:IT術語

④ 磁頭是機械硬碟中最重要的部件,磁頭有什麼功能

1、當硬碟驅動器加電後,利用控制電路進行初始化工作,初始化完成後主軸電機將啟動並高速旋轉,裝在磁頭的小車機構移動,將浮動磁頭置於碟片表面的0道,處於等待指令的啟動狀態。當介面電路收到微機系統傳來的指令信號時,使該指令信號通過前置放大控制電路,驅動音圈點擊發出磁信號,根據感應阻止變化的磁頭對碟片數據進行正確定位並將接收後的數據信息解碼,然後通過放大控制電路傳輸到介面電路,反饋給主機系統以完成指令操作。當硬碟斷電停止工作時,在反力矩彈簧的作用下,浮動磁頭駐留到盤面中心。

2、硬碟的數據都保存在碟片上,碟片上布滿了磁性物質。我們都知道磁性有南、北兩級,正好可以表示二進制的0和1,二計算機數據的存儲和運算都是以二進制的形式進行的。寫入數據的過程實際上是通過磁頭對硬碟碟片表面上磁性物質的磁極進行改變的過程;讀取數據則是通過磁頭去感應磁阻的變化過程。這里磁頭扮演者極為重要的角色,它也是硬碟里最昂貴的部件。

3、早期的磁頭是多合一的電磁感應式磁頭,但是硬碟數據的讀和寫是兩種截然不同的操作,因此這種二合一磁頭在設計上必須兼顧讀和寫兩種特性,從而造成設計上的局限。而MR磁頭(磁阻磁頭)採用分離式的磁頭結構,寫入磁頭仍採用傳統的感應磁頭(MR不能進行寫作),而讀取磁頭則採用新型的MR磁頭或GMR磁頭,因此寫操作由感應磁頭完成,讀操作有MR磁頭(貨GMR磁頭)完成。這樣,在設計時就可以針對兩者的不同特性分別進行優化,已取得更好的讀寫性能。另外MR磁頭是通過阻值的變化來感應信號的,因而對信號的變化相當敏感,讀取數據的准確率很高。而且由於讀取信號幅度與磁軌寬度無關,所以磁軌可以做得很窄,從而提高碟片的容量。

⑤ 硬碟上採用的磁頭類型,主要有哪兩種

青苜網為您解答:
硬碟上採用的磁頭類型,主要有
MR

GMR
兩種。
GMR
巨磁阻磁頭已開始取代
MR
磁頭成為硬碟磁頭的主流。
MR
磁阻磁頭,
採用的是寫入和讀取磁頭分離式的磁頭結構,
它是通過阻值的變化去感
應信號幅度,
對信號的變化相當敏感,
使其讀取數據的准確性也相應提高,
而且由於其讀取
的信號幅度與磁軌寬度無關,
因而磁軌可以做得很窄,
從而就提高了碟片的密度,
這就使硬
盤的容量能夠做得很大。


GMR
磁頭同
MR
磁頭相比它使用了磁阻效應更好的材料和多層薄膜結構,它比
MR
磁頭更敏感,因而可以實現更高的存儲密度。現在的
MR
磁頭的碟片存儲密度可達到
3Gbit-5Gbit/in2(
每平方英寸每千兆位
)


GMR
磁頭則可達
10Gbit-40Gbit/in2
以上。

⑥ 硬碟的結構及組成

文件系統結構,理解文件系統,要從文件儲存說起。

硬碟結構:

⑦ 硬碟 基本結構是什麼

平時大家在論壇上對硬碟的認識和選購,大都是通過產品的外型、性能指標特徵和網站公布的性能評測報告等方面去了解,但是硬碟的內部結構究竟是怎麼樣的呢,所謂的磁頭、碟片、主軸電機又是長什麼樣子呢,硬碟的讀寫原理是什麼,估計就不是那麼多人清楚了。本文以一塊西數硬碟WD200BB為例向大家講解一下硬碟的內部結構,讓硬體初學者們能夠對硬碟有一個更深的認識。

硬碟的結構與組成
首先要說明的是,本文示例的用的西數WD200BB硬碟,是容量為20G的7200轉的3.5寸桌面級IDE硬碟。除此之外,硬碟還有許多種類,例如老式的普通IDE硬碟是5.25英寸,高度有半高型和全高型,還有體積小巧玲瓏的筆記本電腦,塊頭巨大的高端SCSI硬碟及非常特殊的微型硬碟等,不過,這些名目繁多的硬碟在結構與組成方面大同小異。

一般說來,無論哪種硬碟,都是由碟片、磁頭、碟片主軸、控制電機、磁頭控制器、數據轉換器、介面、緩存等幾個部份組成。所有的碟片都固定在一個旋轉軸上,這個軸即碟片主軸。而所有碟片之間是絕對平行的,在每個碟片的存儲面上都有一個磁頭,磁頭與碟片之間的距離比頭發絲的直徑還小。所有的磁頭連在一個磁頭控制器上,由磁頭控制器負責各個磁頭的運動。磁頭可沿碟片的半徑方向動作,而碟片以每分鍾數千轉到上萬轉的速度在高速旋轉,這樣磁頭就能對碟片上的指定位置進行數據的讀寫操作。由於硬碟是精密設備,塵埃是其大敵,所以必須完全密封。

在硬碟的正面都貼有硬碟的標簽,標簽上一般都標注著與硬碟相關的信息,例如產品型號、產地、出廠日期、產品序列號等,上圖所示的就是WD200BB 的產品標簽。在硬碟的一端有電源介面插座、主從設置跳線器和數據線介面插座,而硬碟的背面則是控制電路板。從下圖中可以清楚地看出各部件的位置。

介面部分 : 介麵包括電源介面插座和數據介面插座兩部份,其中電源插座就是與主機電源相連接,為硬碟正常工作提供電力保證。數據介面插座則是硬碟數據與主板控制晶元之間進行數據傳輸交換的通道,使用時是用一根數據電纜將其與主板IDE介面或與其它控制適配器的介面相連接,經常聽說的40針、80芯的介面電纜也就是指數據電纜,數據介面主要分成IDE介面、SATA介面和SCSI介面三大派系。

控制電路板 : 大多數的控制電路板都採用貼片式焊接,它包括主軸調速電路、磁頭驅動與伺服定位電路、讀寫電路、控制與介面電路等。在電路板上還有一塊ROM 晶元,裡面固化的程序可以進行硬碟的初始化,執行加電和啟動主軸電機,加電初始尋道、定位以及故障檢測等。在電路板上還安裝有容量不等的高速數據緩存晶元,在此塊硬碟內結合有2MB的高速緩存。

固定面板 : 就是硬碟正面的面板,它與底板結合成一個密封的整體,保證了硬碟碟片和機構的穩定運行。在面板上最顯眼的莫過於產品標簽,上面印著產品型號、產品序列號、產品、生產日期等信息,這在上面已提到了。除此,還有一個透氣孔,它的作用就是使硬碟內部氣壓與大氣氣壓保持一致。

硬碟的內部結構
硬碟內部結構由固定面板、控制電路板、磁頭、碟片、主軸、電機、介面及其它附件組成,其中磁頭碟片組件是構成硬碟的核心,它封裝在硬碟的凈化腔體內,包括有浮動磁頭組件、磁頭驅動機構、碟片、主軸驅動裝置及前置讀寫控制電路這幾個部份。將硬碟面板揭開後,內部結構即可一目瞭然。

磁頭碟片組件
磁頭組件 : 這個組件是硬碟中最精密的部位之一,它由讀寫磁頭、傳動手臂、傳動軸三部份組成。磁頭是硬碟技術中最重要和關鍵的一環,實際上是集成工藝製成的多個磁頭的組合,它採用了非接觸式頭、盤結構,加後電在高速旋轉的磁碟表面移動,與碟片之間的間隙只有0.1~0.3um,這樣可以獲得很好的數據傳輸率。現在轉速為7200RPM的硬碟飛高一般都低於0.3um,以利於讀取較大的高信噪比信號,提供數據傳輸率的可靠性。

至於硬碟的工作原理,它是利用特定的磁粒子的極性來記錄數據。磁頭在讀取數據時,將磁粒子的不同極性轉換成不同的電脈沖信號,再利用數據轉換器將這些原始信號變成電腦可以使用的數據,寫的操作正好與此相反。從下圖中我們也可以看出,西數WD200BB硬碟採用單碟雙磁頭設計,但該磁頭組件卻能支持四個磁頭,注意其中有兩個磁頭傳動手臂沒有安裝磁頭。

磁頭驅動機構 : 硬碟的尋道是靠移動磁頭,而移動磁頭則需要該機構驅動才能實現。磁頭驅動機構由電磁線圈電機、磁頭驅動小車、防震動裝置構成,高精度的輕型磁頭驅動機構能夠對磁頭進行正確的驅動和定位,並能在很短的時間內精確定位系統指令指定的磁軌。其中電磁線圈電機包含著一塊永久磁鐵,這是磁頭驅動機構對傳動手臂起作用的關鍵,磁鐵的吸引力足起吸住並吊起拆硬碟使用的螺絲刀。防震動裝置在老硬碟中沒有,它的作用是當硬碟受動強裂震動時,對磁頭及碟片起到一定的保護使用,以避免磁頭將碟片刮傷等情況的發生。這也是為什麼舊硬碟的防震能力比現在新硬秀盤差得多的緣故。

硬碟的內部結構(續)
磁碟碟片 : 碟片是硬碟存儲數據的載體,現在硬碟碟片大多採用鋁金屬薄膜材料,這種金屬薄膜較軟盤的不連續顆粒載體具有更高的存儲密度、高剩磁及高矯頑力等優點。從下圖中可以發現,硬碟碟片是完全平整的,簡直可以當鏡子使用。

主軸組件 : 主軸組件包括主軸部件如軸承和驅動電機等。隨著硬碟容量的擴大和速度的提高,主軸電機的速度也在不斷提升,於是有廠商開始採用精密機械工業的液態軸承電機技術,現在已經被所有主流硬碟廠商所普遍採用了,它有利於降低硬碟工作噪音。

前置控制電路 : 前置電路控制磁頭感應的信號、主軸電機調速、磁頭驅動和伺服定位等,由於磁頭讀取的信號微弱,將放大電路密封在腔體內可減少外來信號的干擾,提高操作指令的准確性。

硬碟的控制電路
硬碟的控制電路位於硬碟背面,將背面電路板的安裝螺絲擰下,翻開控制電路板即可見到控制電路。總得來說,硬碟控制電路可以分為如下幾個部份:主控制晶元、數據傳輸晶元、高速數據緩存晶元等。具體見下圖。

在硬碟控制電路中,主控制晶元負責硬碟數據讀寫指令等工作,WD200BB的主控制晶元為WD70C23-GP,這是一塊中國台灣產的晶元;而數據傳輸晶元則是將硬碟磁頭前置控制電路讀取出數據經過校正及變換後,經過數據介面傳輸到主機系統,至於高速數據緩存晶元是為了協調硬碟與主機在數據處理速度上的差異而設的,該款西數WD200BB的緩存容量大小為2MB。緩存對磁碟性能所帶來的作用是無須置疑的,在讀取零碎文件數據時,大緩存能帶來非常大的優勢,這也是為什麼在高端SCSI硬碟中早就有結合16MB甚至 32MB緩存的產品。

衡量硬碟性能的技術參數
通過以上的介紹,相信朋友們對硬碟的結構與組成有了大致的概念了。下面接著介紹常見的與硬碟性能指標有關的參數,以助朋友們了解那些參數各意味著什麼。

主軸轉速 : 硬碟的主軸轉速是決定硬碟內部數據傳輸率的決定因素之一,它在很大程度上決定了硬碟的速度,同時也是區別硬碟檔次的重要標志。從目前的情況來看,7200RPM的硬碟具有性價比高的優勢,是國內市場上的主流產品,而SCSI硬碟的主軸轉速已經達到10000rpm甚至15000rpm了,但由於價格原因讓普通用戶難以接受。

尋道時間 : 該指標是指硬碟磁頭移動到數據所在磁軌而所用的時間,單位為毫秒(ms)。平均尋道時間則為磁頭移動到正中間的磁軌需要的時間。注意它與平均訪問時間的差別。硬碟的平均尋道時間越小性能則越高,現在一般選用平均尋道時間在10ms以下的硬碟。

單碟容量 : 單碟容量是硬碟相當重要的參數之一,一定程度上決定著硬碟的檔次高低。硬碟是由多個存儲碟片組合而成的,而單碟容量就是一個存儲碟所能存儲的最大數據量。硬碟廠商在增加硬碟容量時,可以通過兩種手段:一個是增加存儲碟片的數量,但受到硬碟整體體積和生產成本的限制,碟片數量都受到限制,一般都在5片以內;而另一個辦法就是增加單碟容量。目前的IDE和SATA硬碟最多隻有四張碟片,靠增加碟片來擴充容量滿足不斷增長的存儲容量的需求是不可行的。只有提高每張碟片的容量才能從根本上解決這個問題。現在的大容量硬碟都採用的是新型GMR巨阻型磁頭,磁碟的記錄密度大大提高,硬碟的單碟容量也相應提高了。目前主流硬碟的單碟容量大都在80GB以上,而最新的希捷酷魚7200.9系列硬碟的最高單碟容量更是達到160GB,使硬碟總容量可以達到 500GB以上。

單碟容量的一個重要意義在於提升硬碟的數據傳輸速度,而且也有利於生產成本的控制。硬碟單碟容量的提高得益於數據記錄密度的提高,而記錄密度同數據傳輸率是成正比的,並且新一代GMR磁頭技術則確保了這個增長不會因為磁頭的靈敏度的限制而放慢速度。在下面的測試中,你將會發現單碟容量越高,它的數據傳輸率也將會越高,其中希捷酷魚7200.9系列硬碟就是一個明顯的例證。

潛伏期 : 該指標表示當磁頭移動到數據所在的磁軌後,等待所要的數據塊繼續轉動(半圈或多些、少些)到磁頭下的時間,其單位為毫秒(ms)。平均潛伏期就是碟片轉半圈的時間。

硬碟表面溫度 : 該指標表示硬碟工作時產生的溫度使硬碟密封殼溫度上升的情況。這項指標廠家並不提供,一般只能在各種媒體的測試數據中看到。硬碟工作時產生的溫度過高將影響薄膜式磁頭的數據讀取靈敏度,因此硬碟工作表面溫度較低的硬碟有更穩定的數據讀、寫性能。

道至道時間 : 該指標表示磁頭從一個磁軌轉移至另一磁軌的時間,單位為毫秒(ms)。

高速緩存 : 該指標指在硬碟內部的高速存儲器。目前硬碟的高速緩存一般為2MB~8MB,SCSI硬碟的更大。購買時最好選用緩存為8M以上的硬碟。

全程訪問時間 : 該指標指磁頭開始移動直到最後找到所需要的數據塊所用的全部時間,單位為毫秒(ms)。而平均訪問時間指磁頭找到指定數據的平均時間,單位為毫秒。通常是平均尋道時間和平均潛伏時間之和。現在不少硬碟廣告之中所說的平均訪問時間大部分都是用平均尋道時間所代替的。

最大內部數據傳輸率 : 該指標名稱也叫持續數據傳輸率(sustained transfer rate),單位為Mb/s。它是指磁頭至硬碟緩存間的最大數據傳輸率,一般取決於硬碟的碟片轉速和碟片線密度(指同一磁軌上的數據容量)。注意,在這項指標中常常使用Mb/s或Mbps為單位,這是兆位/秒的意思,如果需要轉換成MB/s(兆位元組/秒),就必須將Mbps數據除以8(一位元組8位數)。例如,某硬碟給出的最大內部數據傳輸率為683Mbps,如果按MB/s計算就只有85.37MB/s左右。

連續無故障時間(MTBF) : 該指標是指硬碟從開始運行到出現故障的最長時間,單位是小時。目前大部分硬碟的MTBF都在300000小時以上。不過,對於該項指標要客觀地看待,具體可參看BT下載是否傷硬碟的深度分析中對MTBF的詳細闡述和MTBF概念的誤導可以休矣!中不良廠商使用該參數對消費者的誤導。

外部數據傳輸率 : 該指標也稱為突發數據傳輸率,它是指從硬碟緩沖區讀取數據的速率。在廣告或硬碟特性表中常以數據介面速率代替,單位為MB/s。目前主流的硬碟已經全部採用SATA150介面技術,外部數據傳輸率可達150MB/s。

S.M.A.R.T : 該指標的英文全稱是Self-Monitoring Analysis&Reporting Technology,中文含義是自動監測分析報告技術。這項技術指標使得硬碟可以監測和分析自己的工作狀態和性能,並將其顯示出來。用戶可以隨時了解硬碟的運行狀況,遇到緊急情況時,可以採取適當措施,確保硬碟中的數據不受損失。採用這種技術以後,硬碟的可靠性得到了很大的提高。

⑧ 簡述下硬碟的工作原理

硬碟分為機械硬碟與固態硬碟兩者,各類型原理如下:

1、機械硬碟

機械硬碟由磁碟、馬達和磁頭等機械部件組成,當機械硬碟需要讀取數據時,磁頭需要移動到相應的位置,讀取磁碟上的數據,而這個過程是需要時間的,稱之為尋道時間和潛伏周期。

2、固態硬碟

固態硬碟的內部構造包括PCB板、主控制器晶元和快閃記憶體晶元。其中最基本的單位就是快閃記憶體晶元,這是一種非易失性內存晶元,通過充電、放電的方式寫入和擦除數據。

(8)硬碟磁頭結構擴展閱讀:

由於HDD在運行時需要轉動,所以抗震能力和性能比較弱,而且待機轉動時功耗也更高一些(停轉除外),讀寫時會有明顯「吱」的聲響;由於SSD沒有機械結構轉動,所以抗震能力很強,性能也更好,同時功耗也低很多,工作時沒有聲音。

另外容量方面,2.5英寸HDD的容量可以做到最高4TB,主流為1TB和2TB,而SSD即使迎來QLC,目前主流容量還集中在256GB和512GB。SSD是完全可以做大容量的,但由於價格問題,中等容量SSD更容易被接受。