當前位置:首頁 » 硬碟大全 » 硬碟物理結構
擴展閱讀
webinf下怎麼引入js 2023-08-31 21:54:13
堡壘機怎麼打開web 2023-08-31 21:54:11

硬碟物理結構

發布時間: 2022-07-08 06:28:04

A. 硬碟的結構是什麼

1、磁頭
磁頭是硬碟中最昂貴的部件,也是硬碟技術中最重要和最關鍵的一環。傳統的磁頭是讀寫合一的電磁感應式磁頭,但是,硬碟的讀、寫卻是兩種截然不同的操作,為此,這種二合一磁頭在設計時必須要同時兼顧到讀/寫兩種特性,從而造成了硬碟設計上的局限。而MR磁頭(Magnetoresistive
heads),即磁阻磁頭,採用的是分離式的磁頭結構:寫入磁頭仍採用傳統的磁感應磁頭(MR磁頭不能進行寫操作),讀取磁頭則採用新型的MR磁頭,即所謂的感應寫、磁阻讀。這樣,在設計時就可以針對兩者的不同特性分別進行優化,以得到最好的讀/寫性能。另外,MR磁頭是通過阻值變化而不是電流變化去感應信號幅度,因而對信號變化相當敏感,讀取數據的准確性也相應提高。而且由於讀取的信號幅度與磁軌寬度無關,故磁軌可以做得很窄,從而提高了碟片密度,達到200MB/英寸2,而使用傳統的磁頭只能達到20MB/英寸2,這也是MR磁頭被廣泛應用的最主要原因。目前,MR磁頭已得到廣泛應用,而採用多層結構和磁阻效應更好的材料製作的GMR磁頭(Giant
Magnetoresistive
heads)也逐漸普及。
2、磁軌
當磁碟旋轉時,磁頭若保持在一個位置上,則每個磁頭都會在磁碟表面劃出一個圓形軌跡,這些圓形軌跡就叫做磁軌。這些磁軌用肉眼是根本看不到的,因為它們僅是盤面上以特殊方式磁化了的一些磁化區,磁碟上的信息便是沿著這樣的軌道存放的。相鄰磁軌之間並不是緊挨著的,這是因為磁化單元相隔太近時磁性會相互產生影響,同時也為磁頭的讀寫帶來困難。一張1.44MB的3.5英寸軟盤,一面有80個磁軌,而硬碟上的磁軌密度則遠遠大於此值,通常一面有成千上萬個磁軌。
3、扇區
磁碟上的每個磁軌被等分為若干個弧段,這些弧段便是磁碟的扇區,每個扇區可以存放512個位元組的信息,磁碟驅動器在向磁碟讀取和寫入數據時,要以扇區為單位。1.44MB3.5英寸的軟盤,每個磁軌分為18個扇區。
4、柱面
硬碟通常由重疊的一組碟片構成,每個盤面都被劃分為數目相等的磁軌,並從外緣的「0」開始編號,具有相同編號的磁軌形成一個圓柱,稱之為磁碟的柱面。磁碟的柱面數與一個盤面上的磁軌數是相等的。由於每個盤面都有自己的磁頭,因此,盤面數等於總的磁頭數。所謂硬碟的CHS,即Cylinder(柱面)、Head(磁頭)、Sector(扇區),只要知道了硬碟的CHS的數目,即可確定硬碟的容量,硬碟的容量=柱面數*磁頭數*扇區數*512B。

B. 硬碟的結構及組成

文件系統結構,理解文件系統,要從文件儲存說起。

硬碟結構:

C. 硬碟物理結構

磁軌上的扇區不是固定的,一個磁軌上最多可以有63個扇區;
不同廠商不同容量的硬碟,磁軌和扇區數不同,不同廠商相同容量的硬碟,磁軌和扇區數相同;
硬碟寫入順序是按第一盤面第一磁軌上所有扇區,第二盤面第一磁軌上所有扇區,一個柱面寫完,接著寫第一盤面第二磁軌上所有扇區,第二盤面第二磁軌上所有扇區......依次寫入;
硬碟上的所有磁頭是固在同心上的(和你說的固定在一起應該是一個意思)

D. 簡述下硬碟的工作原理

硬碟分為機械硬碟與固態硬碟兩者,各類型原理如下:

1、機械硬碟

機械硬碟由磁碟、馬達和磁頭等機械部件組成,當機械硬碟需要讀取數據時,磁頭需要移動到相應的位置,讀取磁碟上的數據,而這個過程是需要時間的,稱之為尋道時間和潛伏周期。

2、固態硬碟

固態硬碟的內部構造包括PCB板、主控制器晶元和快閃記憶體晶元。其中最基本的單位就是快閃記憶體晶元,這是一種非易失性內存晶元,通過充電、放電的方式寫入和擦除數據。

(4)硬碟物理結構擴展閱讀:

由於HDD在運行時需要轉動,所以抗震能力和性能比較弱,而且待機轉動時功耗也更高一些(停轉除外),讀寫時會有明顯「吱」的聲響;由於SSD沒有機械結構轉動,所以抗震能力很強,性能也更好,同時功耗也低很多,工作時沒有聲音。

另外容量方面,2.5英寸HDD的容量可以做到最高4TB,主流為1TB和2TB,而SSD即使迎來QLC,目前主流容量還集中在256GB和512GB。SSD是完全可以做大容量的,但由於價格問題,中等容量SSD更容易被接受。

E. 硬碟的內部由哪幾部分組成

外部結構方面,各種硬碟之間有著一定的區別,但是其內部結構還是完全相同的,畢竟硬碟的本質工作方式不會改變。硬碟內部核心部分包括盤體、主軸電機、讀寫磁頭、尋道電機等主要部件。不過需要提醒的是,千萬不要隨意打開硬碟的外殼,這將100%地使整個硬碟報廢,因為硬碟的內部盤面不能沾染上一滴灰塵,否則立即報廢。一般硬碟內部結構維修甚至需要在要求極為嚴格的無塵實驗室中進行。
盤體從物理的角度分為磁面(Side)、磁軌(Track)、柱面(Cylinder)與扇區(Sector)等4個結構。磁面也就是組成盤體各碟片的上下兩個盤面,第一個碟片的第一面為0磁面,下一個為1磁面;第二個碟片的第一面為2磁面,以此類推……。磁軌也就是在格式化磁碟時碟片上被劃分出來的許多同心圓。最外層的磁軌為0道,並向著磁面中心增長。事實上,硬碟的盤體結構與大家熟悉的軟盤非常類似。只不過其碟片是由多個重迭在一起並由墊圈隔開的碟片組成,而且碟片採用金屬圓片(IBM曾經採用玻璃作為材料),表面極為平整光滑,並塗有磁性物質。

讀寫磁頭組件由讀寫磁頭、傳動手臂、傳動軸三部分組成。在具體工作時,磁頭通過傳動手臂和傳動軸以固定半徑掃描碟片,以此來讀寫數據。磁頭是集成工藝製成的多個磁頭的組合,採用非接觸式結構。硬碟加電後,讀寫磁頭在高速旋轉的磁碟表面飛行,飛高間隙只有0.1~0.3μm,可以獲得極高的數據傳輸率。新型MR(Magnetoresistive heads) 磁阻磁頭採用讀寫分離的磁頭結構,寫操作時使用傳統的磁感應磁頭,讀操作則採用MR磁頭。

磁頭驅動機構 對於硬碟而言,磁頭驅動機構就好比是一個指揮官,它控制磁頭的讀寫,直接為傳動手臂與傳動軸傳送指令。磁頭驅動機構主要由音圈電機、磁頭驅動小車和防震動機構組成。磁頭驅動機構對磁頭進行正確的驅動,在很短的時間內精確定位到系統指令指定的磁軌上,保證數據讀寫的可靠性。一般而言,磁頭機構的電機有步進電機、力矩電機和音圈電機三種,現在硬碟多採用音圈電機驅動。音圈是中間插有與磁頭相連的磁棒的的線圈,當電流通過線圈時,磁棒就會發生位移,進而驅動裝載磁頭的小車,並根據控制器在盤面上磁頭位置的信息編碼來得到磁頭移動的距離,達到准確定位的目的。

硬碟的主軸組件主要是電機軸承和馬達,我們可以籠統地認為軸承決定一款硬碟的噪音表現,而馬達決定性能。當然,這樣說並不完全,但是基本上表達了這兩項內容在硬碟中的重要地位。從滾珠軸承到油浸軸承再到液態軸承,硬碟軸承處於不斷的改良當中,目前液態軸承已經成為絕對的主流市場。由於採用液體作為軸承,所以金屬之間不直接摩擦,這樣一來除了延長了主軸點解的壽命、減少發熱之外,最重要一點是實現了硬碟雜訊控制的突破。不過需要指出的是,採用液態軸承對於性能並沒有任何好處,甚至反而會延長尋道時間。對於PC設備而言,似乎噪音與性能是一對永遠難以平衡的矛盾。

F. 硬碟的物理結構

碟片、磁頭、磁頭懸臂、磁頭控制電路、邏輯控制電路、電機及控制電路、密封盤體、緩存及數據存取控制等外圍電路。

G. 硬碟的物理結構是什麼樣子得

碟片、磁頭、磁頭懸臂、磁頭控制電路、邏輯控制電路、電機及控制電路、密封盤體、緩存及數據存取控制等外圍電路

H. 硬碟種類、物理幾何結構

硬碟的種類主要是SCSI 、IDE 、以及現在流行的SATA等;任何一種硬碟的生產都要一定的標准;隨著相應的標準的升級,硬碟生產技術也在升級;比如 SCSI標准已經經歷了SCSI-1 、SCSI-2、SCSI-3;其中目前咱們經常在伺服器網站看到的 Ultral-160就是基於SCSI-3標準的;IDE 遵循的是ATA標准,而目前流行的SATA,是ATA標準的升級版本;IDE是並口設備,而SATA是串口,SATA的發展目的是替換IDE;

硬碟的物理幾何結構是由盤、磁碟表面、柱面、扇區組成,一個張硬碟內部是由幾張碟片疊加在一起,這樣形成一個柱體面;每個碟片都有上下表面;磁頭和磁碟表面接觸從而能讀取數據;

I. 電腦硬碟是由什麼做成的請用學過的物理知識解釋原理

由一個或者多個鋁制或者玻璃制的碟片組成。這些碟片外覆蓋有鐵磁性材料。

絕大多數硬碟都是固定硬碟,被永久性地密封固定在硬碟驅動器中。早期的硬碟存儲媒介是可替換的,不過今日典型的硬碟是固定的存儲媒介,被封在硬碟里 (除了一個過濾孔,用來平衡空氣壓力)。

(9)硬碟物理結構擴展閱讀

硬碟的轉速:是指硬碟主軸電機的轉動速度,一般以每分鍾多少轉來表示(RpM),硬碟的主軸馬達帶動碟片高速旋轉,產生浮力使磁頭飄浮在碟片上方。要將所要存取資料的扇區帶到磁頭下方,轉速越快,等待時間也就越短。

硬碟的數據傳輸率:數據傳輸率,它又包括了外部數據傳輸率,和內部數據傳輸率兩種,常說的ATA100中的100就代表著這塊硬碟的外部數據傳輸率理論值是100MB/s,指的是電腦通過數據匯流排從硬碟內部緩存區中所讀取數據的最高速率。

J. 電腦硬碟的構造

結構
硬碟(hard disk)是計算機中最重要的存儲器之一。計算機需要正常運行所需的大部分軟體都存儲在硬碟上。因為硬碟存儲的容量較大,區別於內存、光碟。硬碟是電腦上使用使用堅硬的旋轉碟片為基礎的存儲設備。它在平整的磁性表面存儲和檢索數字數據。

物理結構

磁頭是硬碟中最昂貴的部件,也是硬碟技術中最重要和最關鍵的一環。傳統的磁頭是讀寫合一的電磁感應式磁頭,但是,硬碟的讀、寫卻是兩種截然不同的操作,為此,這種二合一磁頭在設計時必須要同時兼顧到讀/寫兩種特性,從而造成了硬碟設計上的局限。

硬碟
而MR磁頭(Magnetoresistive heads),即磁阻磁頭,採用的是分離式的磁頭結構:寫入磁頭仍採用傳統的磁感應磁頭(MR磁頭不能進行寫操作),讀取磁頭則採用新型的MR磁頭,即所謂的感應寫、磁阻讀。這樣,在設計時就可以針對兩者的不同特性分別進行優化,以得到最好的讀/寫性能。另外,MR磁頭是通過阻值變化而不是電流變化去感應信號幅度,因而對信號變化相當敏感,讀取數據的准確性也相應提高。而且由於讀取的信號幅度與磁軌寬度無關,故磁軌可以做得很窄,從而提高了碟片密度,達到200MB/英寸2,而使用傳統的磁頭只能達到20MB/英寸2,這也是MR磁頭被廣泛應用的最主要原因。MR磁頭已得到廣泛應用,而採用多層結構和磁阻效應更好的材料製作的GMR磁頭(Giant Magnetoresistive heads)也逐漸普及。

磁軌

當磁碟旋轉時,磁頭若保持在一個位置上,則每個磁頭都會在磁碟表面劃出一個圓形軌跡,這些圓形軌跡就叫做磁軌。這些磁軌用肉眼是根本看不到的,因為它們僅是盤面上以特殊方式磁化了的一些磁化區,

垂直記錄時磁顆粒狀態表示
磁碟上的信息便是沿著這樣的軌道存放的。相鄰磁軌之間並不是緊挨著的,這是因為磁化單元相隔太近時磁性會相互產生影響,同時也為磁頭的讀寫帶來困難。一張1.44MB的3.5英寸軟盤,一面有80個磁軌,而硬碟上的磁軌密度則遠遠大於此值,通常一面有成千上萬個磁軌。

磁碟表面塗有做為紀錄使用的磁性介質,其在顯微鏡下呈現出來的便是一個個磁顆粒。微小的磁顆粒極性可以被磁頭快速的改變,並且在改變之後可以穩定的保持,系統通過磁通量以及磁阻的變化來分辨二進制中的0或者1。也正是因為所有的操作均是在微觀情況下進行,所以如果硬碟在高速運行的同時受到外力的震盪,將會有可能因為磁頭拍擊磁碟表面而造成不可挽回的數據損失。除此之外,磁顆粒的單軸異向性和體積會明顯的磁顆粒的熱穩定性,而熱穩定性的高低則決定了磁顆粒狀態的穩定性,也就是決定了所儲存數據的正確性和穩定性。但是,磁顆粒的單軸異向性和體積也不能一味地提高,它們受限於磁頭能提供的寫入場以及介質信噪比的限制。

扇區

磁碟上的每個磁軌被等分為若干個弧段,這些弧段便是磁碟的扇區,每個扇區可以存放512個位元組的信息,磁碟驅動器在向磁碟讀取和寫入數據時,要以扇區為單位。1.44MB3.5英寸的軟盤,每個磁軌分為18個扇區。

柱面

硬碟通常由重疊的一組碟片構成,每個盤面都被劃分為數目相等的磁軌,並從外緣的「0」開始編號,具有相同編號的磁軌形成一個圓柱,稱之為磁碟的柱面。磁碟的柱面數與一個盤面上的磁軌數是相等的。由於每個盤面都有自己的磁頭,因此,盤面數等於總的磁頭數。所謂硬碟的CHS,即Cylinder(柱面)、Head(磁頭)、Sector(扇區),只要知道了硬碟的CHS的數目,即可確定硬碟的容量,硬碟的容量=柱面數磁頭數扇區數512B。

邏輯結構

硬碟的容量還非常小的時候,人們採用與軟盤類似的結構生產硬碟。也就是硬碟碟片的每一條磁軌都具有相同的扇區數。由此產生了所謂的3D參數 (Disk Geometry). 既磁頭數(Heads),柱面數(Cylinders),扇區數(Sectors),以及相應的定址方式。

其中:磁頭數(Heads)表示硬碟總共有幾個磁頭,也就是有幾面碟片, 最大為 255 (用 8 個二進制位存儲);柱面數(Cylinders) 表示硬碟每一面碟片上有幾條磁軌,最大為 1023(用 10 個二進制位存儲);每個扇區一般是 512個位元組, 理論上講這不是必須的,但好像沒有取別的值的。所以磁碟最大容量為:255 * 1023 * 63 * 512 / 1048576 = 8024 GB ( 1M =1048576 Bytes )或硬碟廠商常用的單位:255 * 1023 * 63 * 512 / 1000000 = 8414 GB ( 1M =1000000 Bytes )

在 CHS定址方式中,磁頭,柱面,扇區的取值范圍分別為 0到 Heads - 1。0 到 Cylinders - 1。 1 到 Sectors (注意是從 1 開始)。

基本 Int 13H 調用簡介

BIOS Int 13H 調用是 BIOS提供的磁碟基本輸入輸出中斷調用,它可以完成磁碟(包括硬碟和軟盤)的復位,讀寫,校驗,定位,診,格式化等功能。它使用的就是CHS 定址方式, 因此最大識能訪問 8 GB 左右的硬碟 (本文中如不作特殊說明,均以 1M = 1048576 位元組為單位)。