當前位置:首頁 » 硬碟大全 » 分布式多伺服器緩存一致性
擴展閱讀
webinf下怎麼引入js 2023-08-31 21:54:13
堡壘機怎麼打開web 2023-08-31 21:54:11

分布式多伺服器緩存一致性

發布時間: 2022-06-22 00:23:11

❶ 用一致性hash做分布式,如果其中一台緩存down了,怎麼辦

環割法(一致性 hash)環割法的原理如下:

1. 初始化的時候生成分片數量 X × 環割數量 N 的固定方式編號的字元串,例如 SHARD-1-NODE-1,並計算所有 X×N 個字元串的所有 hash 值。

2. 將所有計算出來的 hash 值放到一個排序的 Map 中,並將其中的所有元素進行排序。

3. 輸入字元串的時候計算輸入字元串的 hash 值,查看 hash 值介於哪兩個元素之間,取小於 hash 值的那個元素對應的分片為數據的分片。

數據比較

下面將通過測試對環割法和跳躍法的性能及均衡性進行對比,說明 DBLE 為何使用跳躍法代替了環割法。

  • 數據源:現場數據 350595 條

  • 測試經過:

    1. 通過各自的測試方法執行對於測試數據的分片任務。

    2. 測試方法:記錄分片結果的方差;記錄從開始分片至分片結束的時間;記錄分片結果與平均數的最大差值。

    3. 由於在求模法 PartitionByString 的方法中要求分片的數量是 1024 的因數,所以測試過程只能使用 2 的指數形式進行測試,並在 PartitionByString 方法進行測試的時候不對於 MAC 地址進行截斷,取全量長度進行測試。

❷ 分布式系統常用的一致性演算法有哪些

在做伺服器負載均衡時候可供選擇的負載均衡的演算法有很多,包括: 輪循演算法(Round Robin)、哈希演算法(HASH)、最少連接演算法(Least Connection)、響應速度演算法(Response Time)、加權法(Weighted )等。其中哈希演算法是最為常用的演算法. 典型的應用場景是: 有N台伺服器提供緩存服務,需要對伺服器進行負載均衡,將請求平均分發到每台伺服器上,每台機器負責1/N的服務。 常用的演算法是對hash結果取余數 (hash() mod N):對機器編號從0到N-1,按照自定義的hash()演算法,對每個請求的hash()值按N取模,得到余數i,然後將請求分發到編號為i的機器。但這樣的演算法方法存在致命問題,如果某一台機器宕機,那麼應該落在該機器的請求就無法得到正確的處理,這時需要將當掉的伺服器從演算法從去除,此時候會有(N-1)/N的伺服器的緩存數據需要重新進行計算;如果新增一台機器,會有N /(N+1)的伺服器的緩存數據需要進行重新計算。對於系統而言,這通常是不可接受的顛簸(因為這意味著大量緩存的失效或者數據需要轉移)。那麼,如何設計一個負載均衡策略,使得受到影響的請求盡可能的少呢? 在Memcached、Key-Value Store、Bittorrent DHT、LVS中都採用了Consistent Hashing演算法,可以說Consistent Hashing 是分布式系統負載均衡的首選演算法。 1、Consistent Hashing演算法描述 下面以Memcached中的Consisten Hashing演算法為例說明。 由於hash演算法結果一般為unsigned int型,因此對於hash函數的結果應該均勻分布在[0,232-1]間,如果我們把一個圓環用232 個點來進行均勻切割,首先按照hash(key)函數算出伺服器(節點)的哈希值, 並將其分布到0~232的圓上。 用同樣的hash(key)函數求出需要存儲數據的鍵的哈希值,並映射到圓上。然後從數據映射到的位置開始順時針查找,將數據保存到找到的第一個伺服器(節點)上。 Consistent Hashing原理示意圖 新增一個節點的時候,只有在圓環上新增節點逆時針方向的第一個節點的數據會受到影響。刪除一個節點的時候,只有在圓環上原來刪除節點順時針方向的第一個節點的數據會受到影響,因此通過Consistent Hashing很好地解決了負載均衡中由於新增節點、刪除節點引起的hash值顛簸問題。 Consistent Hashing添加伺服器示意圖 虛擬節點(virtual nodes):之所以要引進虛擬節點是因為在伺服器(節點)數較少的情況下(例如只有3台伺服器),通過hash(key)算出節點的哈希值在圓環上並不是均勻分布的(稀疏的),仍然會出現各節點負載不均衡的問題。虛擬節點可以認為是實際節點的復製品(replicas),本質上與實際節點實際上是一樣的(key並不相同)。引入虛擬節點後,通過將每個實際的伺服器(節點)數按照一定的比例(例如200倍)擴大後並計算其hash(key)值以均勻分布到圓環上。在進行負載均衡時候,落到虛擬節點的哈希值實際就落到了實際的節點上。由於所有的實際節點是按照相同的比例復製成虛擬節點的,因此解決了節點數較少的情況下哈希值在圓環上均勻分布的問題。 虛擬節點對Consistent Hashing結果的影響 從上圖可以看出,在節點數為10個的情況下,每個實際節點的虛擬節點數為實際節點的100-200倍的時候,結果還是很均衡的。 第3段中有這些文字:「但這樣的演算法方法存在致命問題,如果某一台機器宕機,那麼應該落在該機器的請求就無法得到正確的處理,這時需要將當掉的伺服器從演算法從去除,此時候會有(N-1)/N的伺服器的緩存數據需要重新進行計算;」 為何是 (N-1)/N 呢?解釋如下: 比如有 3 台機器,hash值 1-6 在這3台上的分布就是: host 1: 1 4 host 2: 2 5 host 3: 3 6 如果掛掉一台,只剩兩台,模數取 2 ,那麼分布情況就變成: host 1: 1 3 5 host 2: 2 4 6 可以看到,還在數據位置不變的只有2個: 1,2,位置發生改變的有4個,占共6個數據的比率是 4/6 = 2/3這樣的話,受影響的數據太多了,勢必太多的數據需要重新從 DB 載入到 cache 中,嚴重影響性能 【consistent hashing 的辦法】 上面提到的 hash 取模,模數取的比較小,一般是負載的數量,而 consistent hashing 的本質是將模數取的比較大,為 2的32次方減1,即一個最大的 32 位整數。然後,就可以從容的安排數據導向了,那個圖還是挺直觀的。 以下部分為一致性哈希演算法的一種PHP實現。點擊下載

❸ 分布式緩存中,哈希取余分區和一致性哈希分區有什麼區別

環割法(一致性 hash)環割法的原理如下:

1. 初始化的時候生成分片數量 X × 環割數量 N 的固定方式編號的字元串,例如 SHARD-1-NODE-1,並計算所有 X×N 個字元串的所有 hash 值。

2. 將所有計算出來的 hash 值放到一個排序的 Map 中,並將其中的所有元素進行排序。

3. 輸入字元串的時候計算輸入字元串的 hash 值,查看 hash 值介於哪兩個元素之間,取小於 hash 值的那個元素對應的分片為數據的分片。

數據比較

下面將通過測試對環割法和跳躍法的性能及均衡性進行對比,說明 DBLE 為何使用跳躍法代替了環割法。

  • 數據源:現場數據 350595 條

  • 測試經過:

    1. 通過各自的測試方法執行對於測試數據的分片任務。

    2. 測試方法:記錄分片結果的方差;記錄從開始分片至分片結束的時間;記錄分片結果與平均數的最大差值。

    3. 由於在求模法 PartitionByString 的方法中要求分片的數量是 1024 的因數,所以測試過程只能使用 2 的指數形式進行測試,並在 PartitionByString 方法進行測試的時候不對於 MAC 地址進行截斷,取全量長度進行測試。

❹ 如何讓多台伺服器實現數據同步

如何讓所有伺服器之間數據同步

1、採用高可用sureHA軟體鏡像型,一台主伺服器,一台備伺服器,通過網線實時將數據備份,實現伺服器雙機互備的功能,此方式保證多台伺服器之間數據的一致性。

2、採用高可用sureHA雙機熱備共享型。一台主伺服器,一台備伺服器,鏈接一台存儲,將數據放到存儲裡面,實現數據的共享。此方式保證多台伺服器之間數據的一致性。

3、可實現伺服器虛擬化,把所有的伺服器物理資源都整理成一個大的資源池,數據都存放在磁碟陣列上面,所有應用系統都通過調用磁碟陣列裡面的數據,此方式保證多台伺服器之間數據的一致性。

不管技術怎麼實現,在伺服器方面還是需要人為的進行操作和監督,伺服器同步也成為不可缺少的一部分。所以海騰數據的伺服器的硬體要求和機房的線路穩定是保障以上實現的關鍵。參考海騰數據伺服器租用

伺服器數據同步

❺ 分布式存儲中,怎樣使用paxos演算法保證數據的一致性

在分布式系統中,我們經常遇到多數據副本保持一致的問題,在我們所能找到的資料中該問題講的很籠統,模模糊糊的,把多個問題或分類糅合在一起,難以理解。在思考和翻閱資料後,通俗地把一致性的問題可分解為2個問題:
1、任何一次修改保證數據一致性。
2、多次數據修改的一致性。
在弱一致性的演算法,不要求每次修改的內容在修改後多副本的內容是一致的,對問題1的解決比較寬松,更多解決問題2,該類演算法追求每次修改的高度並發性,減少多副本之間修改的關聯性,以獲得更好的並發性能。例如最終一致性,無所謂每次用戶修改後的多副本的一致性及格過,只要求在單調的時間方向上,數據最終保持一致,如此獲得了修改極大的並發性能。
在強一致性的演算法中,強調單次修改後結果的一致,需要保證了對問題1和問題2要求的實現,犧牲了並發性能。本文是討論對解決問題1實現演算法,這些演算法往往在強一致性要求的應用中使用。
解決問題1的方法,通常有兩階段提交演算法、採用分布式鎖服務和採用樂觀鎖原理實現的同步方式,下面分別介紹這幾種演算法的實現原理。

兩階段提交演算法

在兩階段提交協議中,系統一般包含兩類機器(或節點):一類為協調者(coordinator),通常一個系統中只有一個;另一類為事務參與者(participants,cohorts或workers),一般包含多個,在數據存儲系統中可以理解為數據副本的個數。兩階段提交協議由兩個階段組成,在正常的執行下,這兩個階段的執行過程如下所述:
階段1:請求階段(commit-request phase,或稱表決階段,voting phase)。
在請求階段,協調者將通知事務參與者准備提交或取消事務,然後進入表決過程。在表決過程中,參與者將告知協調者自己的決策:同意(事務參與者本地作業執行成功)或取消(本地作業執行故障)。
階段2:提交階段(commit phase)。
在該階段,協調者將基於第一個階段的投票結果進行決策:提交或取消。當且僅當所有的參與者同意提交事務協調者才通知所有的參與者提交事務,否則協調者將通知所有的參與者取消事務。參與者在接收到協調者發來的消息後將執行響應的操作。
舉個例子:A組織B、C和D三個人去爬長城:如果所有人都同意去爬長城,那麼活動將舉行;如果有一人不同意去爬長城,那麼活動將取消。用2PC演算法解決該問題的過程如下:
首先A將成為該活動的協調者,B、C和D將成為該活動的參與者。
階段1:A發郵件給B、C和D,提出下周三去爬山,問是否同意。那麼此時A需要等待B、C和D的郵件。B、C和D分別查看自己的日程安排表。B、C發現自己在當日沒有活動安排,則發郵件告訴A它們同意下周三去爬長城。由於某種原因,D白天沒有查看郵件。那麼此時A、B和C均需要等待。到晚上的時候,D發現了A的郵件,然後查看日程安排,發現周三當天已經有別的安排,那麼D回復A說活動取消吧。
階段2:此時A收到了所有活動參與者的郵件,並且A發現D下周三不能去爬山。那麼A將發郵件通知B、C和D,下周三爬長城活動取消。此時B、C回復A「太可惜了」,D回復A「不好意思」。至此該事務終止。
兩階段提交演算法在分布式系統結合,可實現單用戶對文件(對象)多個副本的修改,多副本數據的同步。其結合的原理如下:
1、客戶端(協調者)向所有的數據副本的存儲主機(參與者)發送:修改具體的文件名、偏移量、數據和長度信息,請求修改數據,該消息是1階段的請求消息。
2、存儲主機接收到請求後,備份修改前的數據以備回滾,修改文件數據後,向客戶端回應修改成功的消息。 如果存儲主機由於某些原因(磁碟損壞、空間不足等)不能修改數據,回應修改失敗的消息。
3、客戶端接收發送出去的每一個消息回應,如果存儲主機全部回應都修改成功,向每存儲主機發送確認修改的提交消息;如果存在存儲主機回應修改失敗,或者超時未回應,客戶端向所有存儲主機發送取消修改的提交消息。該消息是2階段的提交消息。
4、存儲主機接收到客戶端的提交消息,如果是確認修改,則直接回應該提交OK消息;如果是取消修改,則將修改數據還原為修改前,然後回應取消修改OK的消息。
5、 客戶端接收全部存儲主機的回應,整個操作成功。
在該過程中可能存在通信失敗,例如網路中斷、主機宕機等諸多的原因,對於未在演算法中定義的其它異常,都認為是提交失敗,都需要回滾,這是該演算法基於確定的通信回復實現的,在參與者的確定回復(無論是回復失敗還是回復成功)之上執行邏輯處理,符合確定性的條件當然能夠獲得確定性的結果哲學原理。

分布式鎖服務

分布式鎖是對數據被外界修改持保守態度,在整個數據處理過程中將數據處於鎖定狀態,在用戶修改數據的同時,其它用戶不允許修改。
採用分布式鎖服務實現數據一致性,是在操作目標之前先獲取操作許可,然後再執行操作,如果其他用戶同時嘗試操作該目標將被阻止,直到前一個用戶釋放許可後,其他用戶才能夠操作目標。分析這個過程,如果只有一個用戶操作目標,沒有多個用戶並發沖突,也申請了操作許可,造成了由於申請操作許可所帶來的資源使用消耗,浪費網路通信和增加了延時。
採用分布式鎖實現多副本內容修改的一致性問題, 選擇控制內容顆粒度實現申請鎖服務。例如我們要保證一個文件的多個副本修改一致, 可以對整個文件修改設置一把鎖,修改時申請鎖,修改這個文件的多個副本,確保多個副本修改的一致,修改完成後釋放鎖;也可以對文件分段,或者是文件中的單個位元組設置鎖, 實現更細顆粒度的鎖操作,減少沖突。
常用的鎖實現演算法有Lamport bakery algorithm (俗稱麵包店演算法), 還有Paxos演算法。下面對其原理做簡單概述。

Lamport麵包店演算法

是解決多個線程並發訪問一個共享的單用戶資源的互斥問題的演算法。 由Leslie Lamport(英語:Leslie Lamport)發明。
Lamport把這個並發控制演算法可以非常直觀地類比為顧客去麵包店采購。麵包店只能接待一位顧客的采購。已知有n位顧客要進入麵包店采購,安排他們按照次序在前台登記一個簽到號碼。該簽到號碼逐次加1。根據簽到號碼的由小到大的順序依次入店購貨。完成購買的顧客在前台把其簽到號碼歸0. 如果完成購買的顧客要再次進店購買,就必須重新排隊。
這個類比中的顧客就相當於線程,而入店購貨就是進入臨界區獨占訪問該共享資源。由於計算機實現的特點,存在兩個線程獲得相同的簽到號碼的情況,這是因為兩個線程幾乎同時申請排隊的簽到號碼,讀取已經發出去的簽到號碼情況,這兩個線程讀到的數據是完全一樣的,然後各自在讀到的數據上找到最大值,再加1作為自己的排隊簽到號碼。為此,該演算法規定如果兩個線程的排隊簽到號碼相等,則線程id號較小的具有優先權。
把該演算法原理與分布式系統相結合,即可實現分步鎖。

Paxos演算法

該演算法比較熱門,參見WIKI,http://zh.wikipedia.org/wiki/Paxos%E7%AE%97%E6%B3%95
Paxos演算法解決的問題是一個分布式系統如何就某個值(決議)達成一致。一個典型的場景是,在一個分布式資料庫系統中,如果各節點的初始狀態一致,每個節點都執行相同的操作序列,那麼他們最後能得到一個一致的狀態。為保證每個節點執行相同的命令序列,需要在每一條指令上執行一個「一致性演算法」以保證每個節點看到的指令一致。一個通用的一致性演算法可以應用在許多場景中,是分布式計算中的重要問題。節點通信存在兩種模型:共享內存(Shared memory)和消息傳遞(Messages passing)。Paxos演算法就是一種基於消息傳遞模型的一致性演算法。BigTable使用一個分布式數據鎖服務Chubby,而Chubby使用Paxos演算法來保證備份的一致性。

採用樂觀鎖原理實現的同步

我們舉個例子說明該演算法的實現原理。如一個金融系統,當某個操作員讀取用戶的數據,並在讀出的用戶數據的基礎上進行修改時(如更改用戶帳戶余額),如果採用前面的分布式鎖服務機制,也就意味著整個操作過程中(從操作員讀出數據、開始修改直至提交修改結果的全過程,甚至還包括操作員中途去煮咖啡的時間),資料庫記錄始終處於加鎖狀態,可以想見,如果面對幾百上千個並發,這樣的情況將導致怎樣的後果。
樂觀鎖機制在一定程度上解決了這個問題。樂觀鎖,大多是基於數據版本( Version)記錄機制實現。何謂數據版本?即為數據增加一個版本標識,在基於資料庫表的版本解決方案中,一般是通過為資料庫表增加一個 「version」 欄位來實現。讀取出數據時,將此版本號一同讀出,之後更新時,對此版本號加一。此時,將提交數據的版本數據與資料庫表對應記錄的當前版本信息進行比對,如果提交的數據版本號大於資料庫表當前版本號,則予以更新,否則認為是過期數據。
對於上面修改用戶帳戶信息的例子而言,假設資料庫中帳戶信息表中有一個 version 欄位,當前值為 1 ;而當前帳戶余額欄位( balance )為 $100 。
操作員 A 此時將其讀出(version=1 ),並從其帳戶余額中扣除 $50($100-$50 )。
在操作員 A 操作的過程中,操作員B也讀入此用戶信息( version=1 ),並從其帳戶余額中扣除 $20 ( $100-$20 )。
操作員 A 完成了修改工作,將數據版本號加一( version=2 ),連同帳戶扣除後余額( balance=$50 ),提交至資料庫更新,此時由於提交數據版本大於資料庫記錄當前版本,數據被更新,資料庫記錄 version 更新為 2 。
操作員 B 完成了操作,也將版本號加一( version=2 )試圖向資料庫提交數據( balance=$80 ),但此時比對資料庫記錄版本時發現,操作員 B 提交的數據版本號為 2 ,資料庫記錄當前版本也為 2 ,不滿足 「 提交版本必須大於記錄當前版本才能執行更新 「 的樂觀鎖策略,因此,操作員 B 的提交被駁回。這樣,就避免了操作員 B 用基於 version=1 的舊數據修改的結果覆蓋操作員A 的操作結果的可能。
樂觀鎖機制與分布式系統相結合上, 我整理了偽代碼如下:
obj 操作的目標
vlaue 修改的值
atom_update_ver 每個目標上的版本,每次修改該值遞增
set( obj, value)
{
//從每個節點上取出修改前的對象版本
get original_ver = obj.atom_update_ver from each node;
//將值賦到每個節點的obj目標
set obj = value from each node;
//條件修改每個節點的obj版本,目標版本加一
//比較和修改操作是原子操作
result = (set obj.atom_update_ver = original_ver + 1
where original_ver + 1 > obj.atom_update_ver
for each node);
if(result == ok)
return set_ok;
else
return set(obj, value);//不成功遞歸修改

該演算法未考慮節點下線、失效等問題,在後續我將分析採用樂觀鎖原理實現一致性演算法,解決問題2、節點失效、通信失敗等問題。

❻ 在分布式存儲系統中,一致性問題的產生原因是什麼

現在先拋出問題,假設有一個主數據中心在北京M,然後有成都A,上海B兩個地方數據中心,現在的問題是,假設成都上海各自的數據中心有記錄變更,需要先同步到主數據中心,主數據中心更新完成之後,在把最新的數據分發到上海,成都的地方數據中心A,地方數據中心更新數據,保持和主數據中心一致性(資料庫結構完全一致)。數據更新的消息是通過一台中心的MQ進行轉發。

先把問題簡單化處理,假設A增加一條記錄Message_A,發送到M,B增加一條記錄 MESSAGE_B發送到M,都是通過MQ伺服器進行轉發,那麼M系統接收到條消息,增加兩條數據,那麼M在把增加的消息群發給A,B,A和B找到自己缺失的數據,更新資料庫。這樣就完成了一個數據的同步。

❼ chcahe 如何保證分布式緩存數據一致性

VPLEX的技術核心是「分布式緩存一致性」,下圖則是「分布式緩存一致性」技術的工作機制示意:正是因為這項核心技術優勢,使得VPLEX方案和目前所有廠商的虛擬化方案截然不同,並能夠實現異地的數據中心整合。對跨數據中心的所有負載實現跨引擎的平攤或者實時遷移,來自任何一個主機的I/O請求可以通過任何一個引擎得到響應。
緩存一致性的記錄目錄使用少量的元數據,記錄下哪個數據塊屬於哪個引擎更新的,以及在何時更新過,並通過4K大小的數據塊告訴在集群中的所有其他的引擎。在整個過程中實際發生的溝通過程,遠遠比實際上正在更新數據塊少很多。

分布式緩存一致性數據流示意圖:上方是一個目錄,記錄下左側的主機讀取緩存A的操作,並分發給所有引擎,右側主機需要讀取該數據塊時,會先通過目錄查詢,確定該數據塊所屬的引擎位置,讀取請求會直接發送給引擎,並直接從數據塊所在的緩存上讀取。
當一個讀請求進入時,VPLEX會自動檢查目錄,查找該數據塊所屬的引擎,一旦確定該數據塊所屬的引擎位置,讀的請求會直接發送給該引擎。一旦一個寫入動作完成,並且目錄表被修改,這時另一個讀請求從另一個引擎過來,VPLEX會檢查目錄,並且直接從該引擎的緩存上讀取。如果該數據仍然在緩存上,則完全沒必要去磁碟上讀取。
如上圖,來自圖中左側主機的操作,由Cache A服務,會記錄一個更新狀態,並分發給所有所有引擎知道。如果讀取的需求來自最右側的伺服器,首先通過目錄查詢。通過這種技術可以實現所有引擎一致性工作,而且這個技術不僅可以跨引擎還可以跨VPLEX集群,而VPLEX集群可以跨區域,因此緩存一致性也可以跨區域部署。

分布式緩存一致性技術使VPLEX相比傳統的虛擬化方案擁有更高的性能和可靠性,並實現異地數據中心的虛擬化整合
對傳統的虛擬化架構來說,如果虛擬化的I/O集群中有一個節點壞了,那麼性能就會降低一半,而且實際情況降低不止一半。因為壞了一個節點,這個節點緩存一般會被寫進去。因為沒有緩存,操作會直接寫到硬碟里。如果圖中中心這個節點壞掉,那主機所有的可用性都沒有了。而VPLEX如果有一個引擎或者一個控制器壞掉了,那這個引擎的負載會均攤到其他活動引擎上。這樣總體來講用戶可以維持可預知性能,性能降低也不那麼明顯。

❽ 多台伺服器,在分流時,怎樣保證數據的一致性

可以在空閑時段設置資料庫同步

❾ 集群部署怎麼保障系統的可靠性

VPLEX的技術核心是「分布式緩存一致性」,下圖則是「分布式緩存一致性」技術的工作機制示意:正是因為這項核心技術優勢,使得VPLEX方案和目前所有廠商的虛擬化方案截然不同,並能夠實現異地的數據中心整合。對跨數據中心的所有負載實現跨引擎的平攤或者實時遷移,來自任何一個主機的I/O請求可以通過任何一個引擎得到響應。 緩存一致性的記錄目錄使用少量的元數據,記錄下哪個數據塊屬於哪個引擎更新的,以及在何時更新過,並通過4K大小的數據塊告訴在集群中的所有其他的引擎。在整個過程中實際發生的溝通過程,遠遠比實際上正在更新數據塊少很多。 分布式緩存一致性數據流示意圖:上方是一個目錄,記錄下左側的主機讀取緩存A的操作,並分發給所有引擎,右側主機需要讀取該數據塊時,會先通過目錄查詢,確定該數據塊所屬的引擎位置,讀取請求會直接發送給引擎,並直接從數據塊所在的緩存上讀取。 當一個讀請求進入時,VPLEX會自動檢查目錄,查找該數據塊所屬的引擎,一旦確定該數據塊所屬的引擎位置,讀的請求會直接發送給該引擎。一旦一個寫入動作完成,並且目錄表被修改,這時另一個讀請求從另一個引擎過來,VPLEX會檢查目錄,並且直接從該引擎的緩存上讀取。如果該數據仍然在緩存上,則完全沒必要去磁碟上讀取。 如上圖,來自圖中左側主機的操作,由Cache A服務,會記錄一個更新狀態,並分發給所有所有引擎知道。如果讀取的需求來自最右側的伺服器,首先通過目錄查詢。通過這種技術可以實現所有引擎一致性工作,而且這個技術不僅可以跨引擎還可以跨VPLEX集群,而VPLEX集群可以跨區域,因此緩存一致性也可以跨區域部署。 分布式緩存一致性技術使VPLEX相比傳統的虛擬化方案擁有更高的性能和可靠性,並實現異地數據中心的虛擬化整合 對傳統的虛擬化架構來說,如果虛擬化的I/O集群中有一個節點壞了,那麼性能就會降低一半,而且實際情況降低不止一半。因為壞了一個節點,這個節點緩存一般會被寫進去。因為沒有緩存,操作會直接寫到硬碟里。如果圖中中心這個節點壞掉,那主機所有的可用性都沒有了。而VPLEX如果有一個引擎或者一個控制器壞掉了,那這個引擎的負載會均攤到其他活動引擎上。這樣總體來講用戶可以維持可預知性能,性能降低也不那麼明顯。