『壹』 硬碟是什麼材料的
硬碟(港台稱之為硬碟,英文名:Hard Disk Drive, 簡稱HDD 全名溫徹斯特式硬碟)由一個或者多個鋁制或者玻璃制的碟片組成。這些碟片外覆蓋有鐵磁性材料。硬碟的外部結構主要包括金屬固定面板、控制電路板和介面三部分。
作為計算機系統的數據存儲器,容量是硬碟最主要的參數。硬碟的容量以兆位元組(MB)或千兆位元組(GB)為單位,1GB=1024MB,1TB=1024GB。但硬碟廠商在標稱硬碟容量時通常取1G=1000MB,因此我們在BIOS中或在格式化硬碟時看到的容量會比廠家的標稱值要小。
(1)硬碟外部結構擴展閱讀
新買來的硬碟是不能直接使用的,必須對它進行分區進行格式化才能存儲數據。經過格式化分區後,邏輯上每個碟片的每一面都會被分為磁軌、扇區、柱面這幾個虛擬的概念,並非像切豆腐一樣真的進行切割。另外,不同的硬碟中碟片數不同,一個碟片有兩面,這兩面都能存儲數據,每一面都會對應一個磁頭,習慣上將盤面數計為磁頭數,用來計算硬碟容量。
扇區、磁軌(或柱面)和磁頭數構成了硬碟結構的基本參數,用這些參數計算硬碟的容量,其計算公式為:存儲容量=磁頭數X磁軌(柱面)數X每道扇區數X每扇區位元組數。
『貳』 硬碟存儲相似相似的物理存儲技術是什麼
硬碟的物理結構和工作原理
硬碟的結構可分為外部結構和內部結構。
下面就西數500G的硬碟為例,來講解一下硬碟的結構。
硬碟外部結構
硬碟的外部結構主要包括金屬固定面板、控制電路板和介面三部分。以下實物圖拍攝:(用了美圖秀秀,不僅臉蛋漂亮連硬碟都變的很漂亮,好劉濞啊。)
金屬固定面板
硬碟外部會有一個金屬的面板,用於保護整個硬碟。
金屬面板和地板結合成一個密封的整體,保證硬碟盤體和機構的穩定運行。
控制電路板
這個電路板是硬碟的控制電路板。該電路板上的電子元器件大多採用貼片式元件焊接,這些電子元器件組成了功能不同的電子電路,這些電路包括主軸調速電路、磁頭驅動與伺服定位電路、讀寫電路、控制與介面電路等。在電路板上有幾個主要的晶元:主控晶元、BIOS晶元、緩存晶元、電機驅動晶元。
介面
在硬碟的頂端會有幾個不同的硬碟介面,這些介面主要包括電源插座介面、數據介面和主、從跳線介面,其中電源插口與主機電源相聯,為硬碟工作提供電力保證。中間的主、從盤跳線介面,用以設置主、從硬碟,即設置硬碟驅動器的訪問順序。
硬碟內部結構
硬碟內部主要包括磁頭組件、磁頭驅動組件、盤體、主軸組件、前置控制電路等。
(1) 磁頭組件
磁頭組件包括讀寫磁頭、傳動手臂、傳動軸三部分組成。
磁頭組件中最主要的部分是磁頭,另外的兩個部分可以看作是磁頭的輔助裝置。傳動軸帶動傳動臂,使磁頭到達指定的位置。
磁頭是硬碟中對碟片進行讀寫工作的工具,是硬碟中最精密的部位之一。磁頭是用線圈纏繞在磁芯上製成的,工作原理則是利用特殊材料的電阻值會隨著磁場變化的原理來讀寫碟片上的數據。硬碟在工作時,磁頭通過感應旋轉的碟片上磁場的變化來讀取數據;通過改變碟片上的磁場來寫入數據。為避免磁頭和碟片的磨損,在工作狀態時,磁頭懸浮在高速轉動的碟片上方,間隙只有0.1~0.3um,而不是碟片直接接觸,在電源關閉之後,磁頭會自動回到在碟片上著陸區,此處碟片並不存儲數據,是碟片的起始位置,如圖,為磁頭組件及磁頭驅動組件。
(2) 磁頭驅動組件
磁頭的移動是靠磁頭驅動組件實現的,硬碟尋道時間的長短與磁頭驅動組件關系非常密切。磁頭的驅動機構由電磁線圈電機、磁頭驅動小車、防震動裝置構成,高精度的輕型磁頭驅動機構能夠對磁頭進行正確的驅動和定位,並能在很短時間內精確定位系統指令指定的磁軌,保證數據讀寫的可靠性。電磁線圈電機包含著一塊永久磁鐵,該磁鐵的磁力很強,對於傳動手臂的運動起著關鍵性的作用。防震裝置是為了避免磁頭將碟片刮傷等情況的發生而設計的。圖為磁頭驅動組件。
(3) 碟片與主軸組件
碟片是硬碟存儲數據的載體,碟片是在鋁合金或玻璃基底上塗覆很薄的磁性材料、保護材料和潤滑材料等多種不同作用的材料層加工而成,其中磁性材料的物理性能和磁層機構直接影響著數據的存儲密度和所存儲數據的穩定性。金屬碟片具有很高的存儲密度、高剩磁及高嬌頑力;玻璃碟片比普通金屬碟片在運行時具有更好的穩定性。如圖。為硬碟的碟片和主軸組件。
主軸組件包括主軸部件軸瓦和驅動電機等。隨著硬碟容量的擴大和速度的提高,主軸電機的速度也在不斷提升,有廠商開始採用精密機械工業的液態軸承機電技術,這種技術的應用有效地降低了硬碟工作噪音。
(4) 前置控制電路
前置放大電路控制磁頭感應的信號、主軸電機調速、磁頭驅動和伺服定位等,由於磁頭讀取的信號微弱,將放大電路密封在腔體內可減少外來信號的干擾,
提高操作指令的准確性,如圖所示硬碟前置控制電路。
1.
2. 硬碟邏輯結構
新買來的硬碟是不能直接使用的,必須對它進行分區進行格式化才能存儲數據。經過格式化分區後,邏輯上每個碟片的每一面都會被分為磁軌、扇區、柱面這幾個虛擬的概念,並非像切豆腐一樣真的進行切割。如圖所示為硬碟劃分的邏輯結構圖。另外,不同的硬碟中碟片數不同,一個碟片有兩面,這兩面都能存儲數據,每一面都會對應一個磁頭,習慣上將盤面數計為磁頭數,用來計算硬碟容量。
扇區、磁軌(或柱面)和磁頭數構成了硬碟結構的基本參數,用這些參數計算硬碟的容量,其計算公式為:
存儲容量=磁頭數X磁軌(柱面)數X每道扇區數X每扇區位元組數
(1) 磁軌
當磁碟旋轉時,磁頭若保持在一個位置上,則每個磁頭都會在磁碟表面劃出一個圓形軌跡,這些圓形軌跡就叫磁軌。磁軌上的磁軌是一組記錄密度不同的同心圓,如圖。磁表面存儲器是在不同形狀(如盤狀、帶狀等)的載體上,塗有磁性材料層,工作時,靠載磁體高速運動,由磁頭在磁層上進行讀寫操作,信息被記錄在磁層上,這些信息的軌跡就是磁軌。這些磁軌用肉眼是根本看不到的,因為他們僅是盤面上以特殊方式磁化了的一些磁化區,磁碟上的信息便是沿著這樣的軌道存放的。相鄰磁軌之間並不是緊挨著的,這是因為磁化單元相隔太近時磁性會產生相互影響,同時也為磁頭的讀寫帶來困難,通常碟片的一面有成千上萬個磁軌。
(2) 扇區
分區格式化磁碟時,每個碟片的每一面都會劃分很多同心圓的磁軌,而且還會將每個同心圓進一步的分割為多個相等的圓弧,這些圓弧就是扇區。為什麼要進行扇區的劃分呢?因為,讀取和寫入數據的時候,磁碟會以扇區為單位進行讀取和寫入數據,即使電腦只需要某個扇區內的幾個位元組的文件,也必須一次把這幾個位元組的數據所在的扇區中的全部512位元組的數據全部讀入內存,然後再進行篩選所需數據,所以為了提高電腦的運行速度,就需要對硬碟進行扇區劃分。另外,每個扇區的前後兩端都會有一些特定的數據,這些數據用來構成扇區之間的界限標志,磁頭通過這些界限標志來識別眾多的扇區。
(3) 柱面
硬碟通常由一個或多個碟片構成,而且每個面都被劃分為數目相等的磁軌,並從外緣開始編號(即最邊緣的磁軌為0磁軌,往裡依次累加)。如此磁碟中具有相同編號的磁軌會形成一個圓柱,此圓柱稱為磁碟的柱面。磁碟的柱面數與一個盤面上的磁軌數是相等的。由於每個盤面都有一個磁頭,因此,盤面數等於總的磁頭數。
一、不同種類的硬碟
硬碟的種類比較多,若是按照硬碟介面類型的不同來分,大致可以分為IDE硬碟、SATA硬碟、SCSI硬碟、移動硬碟、固態硬碟。
硬碟按照其工作形式的不同可以分為兩種,一種是機械硬碟,另一種是固態硬碟。比較常見的機械硬碟按照其介面形式的不同可以分為IDE硬碟、SATA硬碟、SCSI硬碟三種。
1. IDE硬碟
IDE(Integrated Drive Electronics)硬碟是指採用IDE介面的硬碟。如圖,為IDE硬碟。IDE是所有現存並行ATA介面規格的統稱。這種硬碟相對來說價格低廉、兼容性強、工作穩定、容量大、噪音低,應用比較多。但是,這種硬碟採用並行數據傳輸方式,傳輸速度的不斷提升使得信號干擾逐漸變強,不利於數據的傳輸。
2.SATA硬碟
SATA(Serial Advande Technology Attachment)硬碟是指採用SATA介面的硬碟,如圖,為SATA硬碟。SATA介面採用串列數據傳輸方式,理論上傳輸速度比IDE介面要快很多,解決了IDE硬碟數據傳輸信號干擾限制傳輸速率的問題,並且採用該介面的硬碟支持熱插拔,執行率也很高。
3. SCSI硬碟
SCSI(Small Computer System Interface)硬碟就是採用SCSI介面的硬碟,採用這種介面的硬碟主要用於伺服器,如圖為SCIS硬碟。這種介面共有50針,外觀和普通硬碟介面有些相似。SCSI硬碟和普通IDE硬碟相比有很多優點:介面速度快,並且由於主要用於伺服器,因此硬碟本身的性能也比較高,硬碟轉速快,緩存容量大,CPU佔用率低,擴展性遠優於IDE硬碟,並且同樣支持熱插拔。
4. 固態硬碟
固態硬碟(Solid State Disk)用固態電子存儲晶元列陣而製成的硬碟,如圖,所示為固態硬碟,它主要由控制單元和存儲單元(FLASH晶元)組成。固態硬碟的介面規范和定義、功能及使用方法上與普通硬碟的完全相同,在產品外形和尺寸上與普通硬碟幾乎一致。固態硬碟的存儲介質分為兩種,一種是採用快閃記憶體(FLASH晶元)作為存儲介質,另外一種是採用DRAM作為存儲介質。廣泛應用於軍事、車載、工控、視頻監控、網路監控、網路終端、電力、醫療、航空、導航設備等領域。但是,由於固態硬碟的成本比較高,銷售價格相對較高,所以還沒有得到普及。
『叄』 硬碟光碟反光的是什麼材料
硬碟(港台稱之為硬碟,英文名:Hard Disk Drive, 簡稱HDD 全名溫徹斯特式硬碟)由一個或者多個鋁制或者玻璃制的碟片組成。這些碟片外覆蓋有鐵磁性材料。硬碟的外部結構主要包括金屬固定面板、控制電路板和介面三部分。
作為計算機系統的數據存儲器,容量是硬碟最主要的參數。硬碟的容量以兆位元組(MB)或千兆位元組(GB)為單位,1GB=1024MB,1TB=1024GB。但硬碟廠商在標稱硬碟容量時通常取1G=1000MB,因此我們在BIOS中或在格式化硬碟時看到的容量會比廠家的標稱值要小。
(3)硬碟外部結構擴展閱讀
新買來的硬碟是不能直接使用的,必須對它進行分區進行格式化才能存儲數據。經過格式化分區後,邏輯上每個碟片的每一面都會被分為磁軌、扇區、柱面這幾個虛擬的概念,並非像切豆腐一樣真的進行切割。另外,不同的硬碟中碟片數不同,一個碟片有兩面,這兩面都能存儲數據,每一面都會對應一個磁頭,習慣上將盤面數計為磁頭數,用來計算硬碟容量。
扇區、磁軌(或柱面)和磁頭數構成了硬碟結構的基本參數,用這些參數計算硬碟的容量,其計算公式為:存儲容量=磁頭數X磁軌(柱面)數X每道扇區數X每扇區位元組數。
『肆』 什麼是硬碟
最簡單的理解方式:cpu是心臟,提供必要的電腦生存動力。硬碟是大腦,存儲了電腦必備的系統和程序。顯示器鍵盤和滑鼠就是你用來和別人溝通的嘴和手。光碟機軟碟機就是眼睛耳朵,用來採集和充實你電腦的信息量並完成輸出轉換。
ps:如果你不是高手也不想成為高手,就按這個思路理解吧。專業的術語可能會讓你看了頭疼!呵呵。。
但如果你要了解更多,就看看前面老兄們的解釋,很不錯哦!看看下面的也可以:
從計算機系統的結構來看,存儲器分為內存儲器和外存儲器兩大類。內存儲器與CPU直接聯系,負責各種軟體的運行。外存儲器包括軟盤、硬碟、光碟、磁帶機等。硬碟和軟盤很相似,它們的工作原理大致相同,不同的是軟盤與軟盤驅動器是分開的,而硬碟與硬碟驅動器卻是裝在一起。另外,在使用時,二者速度差異很大。
硬碟主要由:碟片,磁頭,碟片轉軸及控制電機,磁頭控制器,數據轉換器,介面,緩存等幾個部分組成。
硬碟中所有的碟片都裝在一個旋轉軸上,每張碟片之間是平行的,在每個碟片的存儲面上有一個磁頭,磁頭與碟片之間的距離比頭發絲的直徑還小,所有的磁頭聯在一個磁頭控制器上,由磁頭控制器負責各個磁頭的運動。磁頭可沿碟片的半徑方向運動,加上碟片每分鍾幾千轉的高速旋轉,磁頭就可以定位在碟片的指定位置上進行數據的讀寫操作。硬碟作為精密設備,塵埃是其大敵,必須完全密封。
(一)硬碟的外部結構。
目前市場上的常見的硬碟除昆騰公司的Bigfoot(大腳)系列為5.25英寸結構外,其他都為3.25英寸產品,其中又有半高型和全高型之分。 常用的3.5英寸硬碟外形大同小異,在沒有元件的一面貼有產品標簽,標簽上是一些與硬碟相關的內容。在硬碟的一端有電源插座、硬碟主、從狀態設置跳線器和數據線聯接插座。
1.介面 包括電源插口和數據介面兩部分,其中電源插口與主機電源相聯,為硬碟工作提供電力保證。數據介面則是硬碟數據和主板控制器之間進行傳輸交換的紐帶,根據聯接方式的差異,分為EIDE介面和SCSI介面等。
2.控制電路板 大多採用貼片式元件焊接,包括主軸調速電路、磁頭驅動與伺服定位電路、讀寫電路、控制與介面電路等。在電路板上還有一塊高效的單片機ROM晶元,其固化的軟體可以進行硬碟的初始化,執行加電和啟動主軸電機,加電初始尋道、定位以及故障檢測等。在電路板上還安裝有容量不等的高速緩存晶元。
3.固定蓋板 就是硬碟的面板,標注產品的型號、產地、設置數據等,和底板結合成一個密封的整體,保證硬碟碟片和機構的穩定運行。固定蓋板和盤體側面還設有安裝孔,以方便安裝。
(二) 硬碟的內部結構
硬碟內部結構由固定面板、控制電路板、盤頭組件、介面及附件等幾大部分組成,而盤頭組件(HardDiskAssembly,HDA)是構成硬碟的核心,封裝在硬碟的凈化腔體內,包括浮動磁頭組件、磁頭驅動機構、碟片及主軸驅動機構、前置讀寫控制電路等。
1.浮動磁頭組件 由讀寫磁頭、傳動手臂、傳動軸三部分組成。磁頭是硬碟技術最重要和關鍵的一環,實際上是集成工藝製成的多個磁頭的組合,它採用了非接觸式頭、盤結構,加電後在高速旋轉的磁碟表面飛行,飛高間隙只有0.1~0.3um,可以獲得極高的數據傳輸率。現在轉速5400rpm的硬碟飛高都低於0.3um,以利於讀取較大的高信噪比信號,提供數據傳輸存儲的可靠性。
圖為:放大了的磁頭部分
2.磁頭驅動機構 由音圈電機和磁頭驅動小車組成,新型大容量硬碟還具有高效的防震動機構。高精度的輕型磁頭驅動機構能夠對磁頭進行正確的驅動和定位,並在很短的時間內精確定位系統指令指定的磁軌,保證數據讀寫的可靠性。
3.碟片和主軸組件 碟片是硬碟存儲數據的載體,現在的碟片大都採用金屬薄膜磁碟,這種金屬薄膜較之軟磁碟的不連續顆粒載體具有更高的記錄密度,同時還具有高剩磁和高矯頑力的特點。主軸組件包括主軸部件如軸瓦和驅動電機等。隨著硬碟容量的擴大和速度的提高,主軸電機的速度也在不斷提升,有廠商開始採用精密機械工業的液態軸承電機技術。
4.前置控制電路 前置放大電路控制磁頭感應的信號、主軸電機調速、磁頭驅動和伺服定位等,由於磁頭讀取的信號微弱,將放大電路密封在腔體內可減少外來信號的干擾,提高操作指令的准確性。
硬碟是計算機中最重要的部件之一,按不同的介面和外形尺寸,其種類有很多,除了現在最常見的台式機中使用的3.5英寸EIDE和SATA介面的產品外,還有其他類型的硬碟。
1、SCSI硬碟
目前計算機中最大的速度瓶頸來自於硬碟。受制於IDE介面的局限,IDE硬碟速度的提高已趨於極限。SCSI硬碟的外觀與普通硬碟基本一致,但現在SCSI硬碟的最高轉速已達到了10000轉/分,平均尋道時間在6ms左右,數據傳輸率可達到160MB/S,尤為關鍵的是SCSI盤的CPU佔有率非常低,在5%左右。這些都使得SCSI硬碟的性能比IDE硬碟有較大的提高。現在7200轉的SCSI盤價位已到了可接受的水平,如果經濟條件許可,選用SCSI盤將有效提高計算機整機性能。
除此以外,SCSI介面和EIDE介面相比還有一個很大的技術優勢,那就是SCSI介面中的設備可以同時使用數據匯流排進行數據傳輸,而EIDE介面中聯接在同一條數據線上的設備只能交替(佔用數據線)進行傳輸;EIDE只能聯接四塊設備,而SCSI介面可以聯接7至15台設備。目前SCSI硬碟介面有三種,分別是50針、68針和80針。我們常見到硬碟型號上標有「N」「W」「SCA」,就是表示介面針數的。N即窄口(Narrow),50針;W即寬口(Wide),68針;SCA即單接頭(Single ConnectorAttachment),80針。其中80針的SCSI盤一般支持熱插拔。
2、活動硬碟
以前個人計算機,主要的存儲設備是固定硬碟和軟盤。固定硬碟為計算機提供了大容量的存儲介質,但是其碟片無法更換,存儲的信息也不便於攜帶和交換。而軟盤則容量太小,可靠性也差。
一般活動硬碟同樣採用Winchester硬碟技術,所以具有固定硬碟的基本技術特徵,速度快,平均尋道時間在12毫秒左右,數據傳輸率可達10M/s,容量能達到10GB以上。活動硬碟的碟片和軟盤一樣,是可以從驅動器中取出和更換的,存儲介質是碟片中的磁合金碟片。根據容量不同,活動硬碟的碟片結構分為單片單面、單片雙面和雙片雙面三種,相應驅動器就有單磁頭、雙磁頭和四磁頭之分。活動硬碟介面方式SCSI、並口、USB等四種方式。用戶可以根據自己的需求和計算機的配置情況選擇不同的介面方式。不過活動硬碟只是曇花一現的產品。隨著使用筆記本硬碟的USB移動硬碟價格的下跌和USB介面的普及,使得USB移動硬碟已經取代了活動硬碟。
3、筆記本硬碟
筆記本電腦內部空間狹小、電池能量有限,再加上移動中的難以避免的磕碰,對其部件的體積、功耗和堅固性等提出了很高的要求。由於筆記本電腦硬碟比通常的桌面硬碟有著更高的品質要求,生產的廠家不多,當今筆記本硬碟市場85%以上的份額被Hitachi(日立、IBM)、Toshiba(東芝)和富士通這三家公司佔領。
筆記本硬碟最大的特點就是小巧輕便,它的直徑一般僅為2.5英寸(還有1.8英寸的產品),厚度也遠低於3.5英寸硬碟。大多數產品厚度僅有9.5mm,重量尚不足百克,堪稱小巧玲瓏。目前筆記本電腦硬碟的發展方向就是外形更小、質量更輕、容量更大。除了常見的為2.5英寸規格,還有一種為1.8英寸規格,主要由東芝生產,隨著輕薄機型的熱銷,1.8寸筆記本硬碟的前景也十分廣闊,收購了IBM硬碟事業部的日立也在今年發布了1.8寸的筆記本硬碟產品:Travelstar C4K40-20。另外東芝和富士通都曾經推出過PC卡介面的1.8英寸硬碟,老機器用來升級容量十分方便。現在Iomega公司計劃在2004年中期推出採用DCT(數字捕捉技術)的移動式1.8英寸硬碟。這種硬碟小到可以裝進筆記本電腦的PC Card中,容量可達到2.5GB以上,而價格僅10美元。
4、微型硬碟
越來越小也是硬碟的發展方向之一,除了1.8寸的硬碟,更小的1英寸HDD(Micro Drive),容量已達到了4GB,其外觀和介面為CF TYPEⅡ型卡,傳送模式為Ultra DMA mode 2。
隨著數碼產品對大容量和小體積存儲介質的要求,早在1998年IBM就憑借強大的研發實力最早推出容量為170/340MB的微型硬碟。而現在,日立、東芝、南方匯通等公司,繼續推出了4GB甚至更大的微型硬碟。微型硬碟最大的特點就是體積小巧容量適中,大多採用CF II插槽,只比普通CF卡稍厚一些。微型硬碟可以說是凝聚了磁儲技術方面的精髓,其內部結構與普通硬碟幾乎完全相同,在有限的體積里包含有相當多的部件。新第一代1英寸以下的硬碟也上市,東芝將是最早推出這種硬碟的公司之一,其直徑僅為0.8英寸左右(SD卡大小),容量卻高達4GB以上。
5、固態硬碟
現在市場上由各種快閃記憶體構成的小型存儲卡應用很廣泛了,其中有一種特殊的快閃記憶體存儲器採用了標准IDE介面,因此也被稱為「固態硬碟」,具有很強的耐沖擊性能和抗干擾能力,在工業控制計算機等設備中應用很廣泛,而隨著信息家電的不斷湧入家庭,以固態硬碟為主的便攜記錄媒體市場將會更加紅火。隨著新型快閃記憶體器件容量的急速增長和價格的下跌,固態硬碟將是今後PC存儲設備發展的趨勢。
提問者對答案的評價:
謝謝你
『伍』 硬碟的結構是什麼
1、磁頭
磁頭是硬碟中最昂貴的部件,也是硬碟技術中最重要和最關鍵的一環。傳統的磁頭是讀寫合一的電磁感應式磁頭,但是,硬碟的讀、寫卻是兩種截然不同的操作,為此,這種二合一磁頭在設計時必須要同時兼顧到讀/寫兩種特性,從而造成了硬碟設計上的局限。而MR磁頭(Magnetoresistive
heads),即磁阻磁頭,採用的是分離式的磁頭結構:寫入磁頭仍採用傳統的磁感應磁頭(MR磁頭不能進行寫操作),讀取磁頭則採用新型的MR磁頭,即所謂的感應寫、磁阻讀。這樣,在設計時就可以針對兩者的不同特性分別進行優化,以得到最好的讀/寫性能。另外,MR磁頭是通過阻值變化而不是電流變化去感應信號幅度,因而對信號變化相當敏感,讀取數據的准確性也相應提高。而且由於讀取的信號幅度與磁軌寬度無關,故磁軌可以做得很窄,從而提高了碟片密度,達到200MB/英寸2,而使用傳統的磁頭只能達到20MB/英寸2,這也是MR磁頭被廣泛應用的最主要原因。目前,MR磁頭已得到廣泛應用,而採用多層結構和磁阻效應更好的材料製作的GMR磁頭(Giant
Magnetoresistive
heads)也逐漸普及。
2、磁軌
當磁碟旋轉時,磁頭若保持在一個位置上,則每個磁頭都會在磁碟表面劃出一個圓形軌跡,這些圓形軌跡就叫做磁軌。這些磁軌用肉眼是根本看不到的,因為它們僅是盤面上以特殊方式磁化了的一些磁化區,磁碟上的信息便是沿著這樣的軌道存放的。相鄰磁軌之間並不是緊挨著的,這是因為磁化單元相隔太近時磁性會相互產生影響,同時也為磁頭的讀寫帶來困難。一張1.44MB的3.5英寸軟盤,一面有80個磁軌,而硬碟上的磁軌密度則遠遠大於此值,通常一面有成千上萬個磁軌。
3、扇區
磁碟上的每個磁軌被等分為若干個弧段,這些弧段便是磁碟的扇區,每個扇區可以存放512個位元組的信息,磁碟驅動器在向磁碟讀取和寫入數據時,要以扇區為單位。1.44MB3.5英寸的軟盤,每個磁軌分為18個扇區。
4、柱面
硬碟通常由重疊的一組碟片構成,每個盤面都被劃分為數目相等的磁軌,並從外緣的「0」開始編號,具有相同編號的磁軌形成一個圓柱,稱之為磁碟的柱面。磁碟的柱面數與一個盤面上的磁軌數是相等的。由於每個盤面都有自己的磁頭,因此,盤面數等於總的磁頭數。所謂硬碟的CHS,即Cylinder(柱面)、Head(磁頭)、Sector(扇區),只要知道了硬碟的CHS的數目,即可確定硬碟的容量,硬碟的容量=柱面數*磁頭數*扇區數*512B。
『陸』 硬碟的內部由哪幾部分組成
外部結構方面,各種硬碟之間有著一定的區別,但是其內部結構還是完全相同的,畢竟硬碟的本質工作方式不會改變。硬碟內部核心部分包括盤體、主軸電機、讀寫磁頭、尋道電機等主要部件。不過需要提醒的是,千萬不要隨意打開硬碟的外殼,這將100%地使整個硬碟報廢,因為硬碟的內部盤面不能沾染上一滴灰塵,否則立即報廢。一般硬碟內部結構維修甚至需要在要求極為嚴格的無塵實驗室中進行。
盤體從物理的角度分為磁面(Side)、磁軌(Track)、柱面(Cylinder)與扇區(Sector)等4個結構。磁面也就是組成盤體各碟片的上下兩個盤面,第一個碟片的第一面為0磁面,下一個為1磁面;第二個碟片的第一面為2磁面,以此類推……。磁軌也就是在格式化磁碟時碟片上被劃分出來的許多同心圓。最外層的磁軌為0道,並向著磁面中心增長。事實上,硬碟的盤體結構與大家熟悉的軟盤非常類似。只不過其碟片是由多個重迭在一起並由墊圈隔開的碟片組成,而且碟片採用金屬圓片(IBM曾經採用玻璃作為材料),表面極為平整光滑,並塗有磁性物質。
讀寫磁頭組件由讀寫磁頭、傳動手臂、傳動軸三部分組成。在具體工作時,磁頭通過傳動手臂和傳動軸以固定半徑掃描碟片,以此來讀寫數據。磁頭是集成工藝製成的多個磁頭的組合,採用非接觸式結構。硬碟加電後,讀寫磁頭在高速旋轉的磁碟表面飛行,飛高間隙只有0.1~0.3μm,可以獲得極高的數據傳輸率。新型MR(Magnetoresistive heads) 磁阻磁頭採用讀寫分離的磁頭結構,寫操作時使用傳統的磁感應磁頭,讀操作則採用MR磁頭。
磁頭驅動機構 對於硬碟而言,磁頭驅動機構就好比是一個指揮官,它控制磁頭的讀寫,直接為傳動手臂與傳動軸傳送指令。磁頭驅動機構主要由音圈電機、磁頭驅動小車和防震動機構組成。磁頭驅動機構對磁頭進行正確的驅動,在很短的時間內精確定位到系統指令指定的磁軌上,保證數據讀寫的可靠性。一般而言,磁頭機構的電機有步進電機、力矩電機和音圈電機三種,現在硬碟多採用音圈電機驅動。音圈是中間插有與磁頭相連的磁棒的的線圈,當電流通過線圈時,磁棒就會發生位移,進而驅動裝載磁頭的小車,並根據控制器在盤面上磁頭位置的信息編碼來得到磁頭移動的距離,達到准確定位的目的。
硬碟的主軸組件主要是電機軸承和馬達,我們可以籠統地認為軸承決定一款硬碟的噪音表現,而馬達決定性能。當然,這樣說並不完全,但是基本上表達了這兩項內容在硬碟中的重要地位。從滾珠軸承到油浸軸承再到液態軸承,硬碟軸承處於不斷的改良當中,目前液態軸承已經成為絕對的主流市場。由於採用液體作為軸承,所以金屬之間不直接摩擦,這樣一來除了延長了主軸點解的壽命、減少發熱之外,最重要一點是實現了硬碟雜訊控制的突破。不過需要指出的是,採用液態軸承對於性能並沒有任何好處,甚至反而會延長尋道時間。對於PC設備而言,似乎噪音與性能是一對永遠難以平衡的矛盾。
『柒』 固態硬碟的結構及工作原理
伸手黨啃爹啊
『捌』 硬碟是不是圓的
硬碟主要由:碟片,磁頭,碟片轉軸及控制電機,磁頭控制器,數據轉換器,介面,緩存等幾個部分組成。
硬碟中所有的碟片都裝在一個旋轉軸上,每張碟片之間是平行的,在每個碟片的存儲面上有一個磁頭,磁頭與碟片之間的距離比頭發絲的直徑還小,所有的磁頭聯在一個磁頭控制器上,由磁頭控制器負責各個磁頭的運動。磁頭可沿碟片的半徑方向運動,加上碟片每分鍾幾千轉的高速旋轉,磁頭就可以定位在碟片的指定位置上進行數據的讀寫操作。硬碟作為精密設備,塵埃是其大敵,必須完全密封。
(一)硬碟的外部結構。
目前市場上的常見的硬碟除昆騰公司的Bigfoot(大腳)系列為5.25英寸結構外,其他都為3.25英寸產品,其中又有半高型和全高型之分。 常用的3.5英寸硬碟外形大同小異,在沒有元件的一面貼有產品標簽,標簽上是一些與硬碟相關的內容。在硬碟的一端有電源插座、硬碟主、從狀態設置跳線器和數據線聯接插座。
1.介面 包括電源插口和數據介面兩部分,其中電源插口與主機電源相聯,為硬碟工作提供電力保證。數據介面則是硬碟數據和主板控制器之間進行傳輸交換的紐帶,根據聯接方式的差異,分為EIDE介面和SCSI介面等。
2.控制電路板 大多採用貼片式元件焊接,包括主軸調速電路、磁頭驅動與伺服定位電路、讀寫電路、控制與介面電路等。在電路板上還有一塊高效的單片機ROM晶元,其固化的軟體可以進行硬碟的初始化,執行加電和啟動主軸電機,加電初始尋道、定位以及故障檢測等。在電路板上還安裝有容量不等的高速緩存晶元。
3.固定蓋板 就是硬碟的面板,標注產品的型號、產地、設置數據等,和底板結合成一個密封的整體,保證硬碟碟片和機構的穩定運行。固定蓋板和盤體側面還設有安裝孔,以方便安裝。
(二) 硬碟的內部結構
硬碟內部結構由固定面板、控制電路板、盤頭組件、介面及附件等幾大部分組成,而盤頭組件(HardDiskAssembly,HDA)是構成硬碟的核心,封裝在硬碟的凈化腔體內,包括浮動磁頭組件、磁頭驅動機構、碟片及主軸驅動機構、前置讀寫控制電路等。
1.浮動磁頭組件 由讀寫磁頭、傳動手臂、傳動軸三部分組成。磁頭是硬碟技術最重要和關鍵的一環,實際上是集成工藝製成的多個磁頭的組合,它採用了非接觸式頭、盤結構,加電後在高速旋轉的磁碟表面飛行,飛高間隙只有0.1~0.3um,可以獲得極高的數據傳輸率。現在轉速5400rpm的硬碟飛高都低於0.3um,以利於讀取較大的高信噪比信號,提供數據傳輸存儲的可靠性。