當前位置:首頁 » 數據倉庫 » 化合物譜圖資料庫
擴展閱讀
webinf下怎麼引入js 2023-08-31 21:54:13
堡壘機怎麼打開web 2023-08-31 21:54:11

化合物譜圖資料庫

發布時間: 2022-11-07 00:54:00

❶ 哪裡可查到化合物的核磁共振氫譜圖

1,一般核磁共振氫譜都是由核磁共振儀直接測出的
他的作用是用於檢驗化合物氫的類型和比值,
2,舉個例子來說,比如CH3CH(CH2CH3)CH3,用核磁共振氫譜儀器測出結果時,
可以看到他有4種峰,而且可以看出強度的比值是3:1:2:6
這樣分析就很容易得出這個簡單有機物有兩個位置相同的C,沒有手性啊,可能5個C原子啊等等
3,核磁共振氫譜一般是做有機物檢驗的
由於測驗比較簡單,基本大學有機合成都會用到,所以一般是沒有專門的歸納的核磁共振氫譜圖表之類的

❷ 美國國家標准與技術研究院的資料庫

根據標准參考數據計劃,NIST的各實驗室正在將他們的資料庫產品不斷加入到在線訪問的資料庫行列,建立了一系列的科學數值資料庫。通過更新現有的資料庫及開發新資料庫,NIST不斷地豐富它的評價數值數據集,為社會提供可靠的、經過評價的數值數據。社會各界的工程師和科學家依靠 NIST的標准參考數據對許多關鍵技術進行決策。
NIST的標准參考資料庫系列包括50多個資料庫,其中大部分是建在微機上的多用途數據包,根據學科可分為以下幾類:分析化學(包括譜學),原子和分子物理,生物技術,化學與晶體結構,化學動力學,工業流體與化工,材料性能,熱力學與熱化學,以及NIST的其它資料庫。
分析化學類包括質譜庫、紅外譜、光電子能譜等資料庫;原子與分子物理類包括光譜性能、c-射線衰減系數及交叉截面、原子光譜等資料庫;生物技術類包括生物大分子結晶庫等資料庫;化學與晶體結構類有電子衍射等資料庫;化學動力學類包括化學動力學、溶液動力學等資料庫;工業流體與化工類有物質的熱力學性能資料庫;材料性能類包括結構陶瓷、腐蝕性能、摩擦材料、高溫超導等資料庫;表面數據類包括表面結構、彈性電子散射交叉截面等資料庫;熱化學類包括化學熱力學、有機化合物熱力學性能估算、JANAF熱化學表等資料庫。
NIST提供科學數值數據服務的方式主要有:①將數據與分析儀器連在一起出售,如質譜庫中有近10萬個化合物數據,附在質譜儀中出售的有常用的幾萬個化合物;②以PC數據包方式出售;③聯機數據服務;④作為其它大的軟體包的一部分;⑤直接裝入用戶的計算機。
具體的在線科學資料庫名單如下:
兒童人體測量資料庫(AnthroKids - Anthropometric Data of Children),
鉑/氖陰極管燈泡的光譜圖(Atlas of the Spectrum of a Platinum/Neon Hollow-Cathode Lamp in the Region 1130-4330 Å),
用於電子結構計算的原子參考資料庫(Atomic Reference Data for Electronic Structure Calculations),
原子光譜資料庫(Atomic Spectra Database,ASD),
原子譜線加寬目錄資料庫(Atomic Spectral Line Broadening Bibliographic Database),
原子躍遷概率資料庫(Atomic Transition Probability Bibliographic Database),
原子重量及同位素成分資料庫(Atomic Weights and Isotopic Compositions),
光子總交叉截面(衰減系數)測量目錄(Bibliography of Photon Total Cross Section (Attenuation Coefficient) Measurements),
生物高分子結晶資料庫(Biological Macromolecule Crystallization Database),
陶瓷互聯網手冊(Ceramics WebBook),
化學動力學資料庫(CKMech,Chemical Kinetic Mechanisms),
化學互聯網手冊(Chemistry WebBook),
單分子反應計算資料庫(ChemRate: A Calculational Database for Unimolecular Reaction),
視覺協同測試床(CIS2 Visual Interoperability Testbed),
化學動力學機理(CKMech,Chemical Kinetic Mechanisms),
計算化學比較和基準資料庫(Computational Chemistry Comparison and Benchmark Database),
計算機辨認工具測試項目網站(Computer Forensics Tool Testing (CFTT) Project Web Site),
二階光譜資料庫(Diatomic Spectral Database),
運演算法則和數據結構字典(Dictionary of Algorithms and Data Structures),
電子與等離子體加工用氣體相互作用數據 (Electron Interactions with Plasma Processing Gases),
元素數據索引(Elemental Data Index),
工程統計學手冊(Engineering Statistics Handbook),
火災研究信息服務(Fire Research Information Services ,FRIS),
基本物理常數(Fundamental Physical Constants),
中性原子的基本水平和電離能量(Ground Levels and Ionization Energies for the Neutral Atoms),
數學軟體指南(Guide to Available Mathematical Software),
NIST計量結果不確定性的評估與表達指南(Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results),
基礎原子光譜數據手冊(Handbook of Basic Atomic Spectroscopic Data),
絕緣體和建築材料的熱傳遞性質(Heat Transmission Properties of Insulating and Building Materials),
高溫超導材料資料庫(High Temperature Superconcting Materials Database),
HIV蛋白酶資料庫(HIV Protease Database),
人線粒體蛋白資料庫(Human Mitochondrial Protein Database),
烴類光譜資料庫(Hydrocarbon Spectral Database),
二氧化碳同位素測定的交互規則(Interactive Algorithm for Isotopic CO2 Measurements),
國際比較資料庫(International Comparisions Database),
ITS-90熱電偶資料庫(ITS-90 Thermocouple Database),
自動數據分析工具(MassSpectator Automated Data Analysis Tool),
矩陣市場資料庫(Matrix Market Database),
相點陣圖和計算熱動力學―焊接系統(Phase Diagrams and Computational Thermodynamics - Solder Systems),
多輪烴結構索引(Polycyclic Aromatic Hydrocarbon Structure Index),
聚合物方法資料庫(Polymer MALDI MS Methods Database),
高級材料的性質數據總結(Property Data Summaries for Advanced Materials),
斷裂韌度性質數據總結(Property Data Summaries for Fracture Toughness),
氧化玻璃的性質數據總結(Property Data Summaries for Oxide Glasses),
蛋白質數據銀行(Protein Data Bank (PDB) ( in collaboration with RCSB )
放射性核半衰期計量(Radionuclide Half-Life Measurements),
用於觀測星際分子微波躍遷的雷達技術掃描頻率(Recommended Rest Frequencies for Observed Interstellar Molecular Microwave Transitions - 1991 Revision),
加強滲透性數值資料庫(Database on Reinforcement Permeability Values),
短暫前後重復的DNA資料庫(Short Tandem Repeat DNA Internet Database),
無鉛焊料的焊接特性資料庫(Database for Solder Properties with Emphasis on New Lead-free Solders),
可溶性資料庫(IUPAC-NIST Solubility Database),
溶解動力學資料庫(NDRL/NIST Solution Kinetics Database on the Web),
坎德拉X-射線天文台光譜資料庫(Spectral Data for the Chandra X-ray Observatory),
統計參考資料庫(Statistical Reference Datasets),
電子、質子和氦離子的靜止能與行程表(Stopping-Power and Range Tables for Electrons,Protons,and Helium Ions),
NIST結構陶瓷學資料庫(NIST Structural Ceramics Database),
合成聚合物質譜項目(Synthetic Polymer Mass Spectrometry Project),
X-射線質量衰減系數和能量吸收系數表(Tables of X-Ray Mass Attenuation Coefficients and Mass Energy - Absorption Coefficients),
酶催化反應的熱力學資料庫(Thermodynamics of Enzyme-Catalyzed Reactions Database),
半導體器件加工用的氣體的熱物理特性資料庫(Database of the Thermophysical Properties of Gases Used in the Semiconctor Instry),
三原子光譜資料庫(Triatomic Spectral Database),
Vibrational branching ratios and asymmetry parameters in the photoionization of CO2 in the region between 650 Å and 840 Å
可見物粘合劑數據集(NIST Visible Cement Dataset),
Wavenumber Calibration Tables from Heterodyne Frequency Measurements
用於劑量測定的X-射線衰減與吸收表(X-Ray Attenuation and Absorption for Materials of Dosimetric Interest),
X-射線波型系數、衰減與散射表(X-Ray Form Factor,Attenuation and Scattering Tables),
X-射線電光子分光光譜資料庫(NIST X-ray Photoelectron Spectros Database),
X-射線躍遷能量資料庫(X-Ray Transition Energies Database),
光子交叉截面資料庫(XCOM: Photon Cross Sections Database)。

❸ 計算化學(Computational Chemistry)在我國的現狀和發展前景如何

計算化學
computational chemistry
計算機在化學中的應用。又稱計算機化學。包括 5 個主要研究領域:① 化學中的數值計算。即利用計算數學方法 ,對化學各專業的數學模型進行數值計算或方程求解,例如 ,量子化學和結構化學中的演繹計算、分析化學中的條件預測、化工過程中的各種應用計算等。②化學模擬。包括:數值模擬,如用曲線擬合法模擬實測工作曲線;過程模擬,根據某一復雜過程的測試數據,建立數學模型,預測反應效果;實驗模擬,通過數學模型研究各種參數(如反應物濃度、溫度、壓力)對產量的影響,在屏幕上顯示反應設備和反應現象的實體圖形,或反應條件與反應結果的坐標圖形。③模式識別在化學中的應用。最常用的方法是統計模式識別法,這是一種統計處理數據、按專業要求進行分類判別的方法,適於處理多因素的綜合影響,例如,根據二元化合物的鍵參數(離子半徑、元素電負性、原子的價徑比等)對化合物進行分類,預報化合物的性質。模式識別廣泛用於最優化設計,根據物性數據設計新的功能材料。④化學資料庫及檢索。在化學資料庫中,數據、常數、譜圖、文摘、操作規程、有機合成路線、應用程序……都是數據。資料庫能存貯大量信息,並可根據不同需要進行檢索。根據譜圖資料庫進行譜圖檢索,已成為有機分析的重要手段,首先將大量的譜圖(紅外、核磁、質譜等)存入資料庫,作為標准譜圖,然後由實驗測出未知物的各種譜圖,把它們和標准譜圖進行對照,就可求得未知物的組成和結構。⑤化學專家系統。專家系統是資料庫與人工智慧結合的產物,它把知識規則作為程序,讓機器模擬專家的分析、推理過程,達到用機器代替專家的效果。如酸鹼平衡專家系統,內容包括知識庫和檢索系統,當你向它提出問題時,它能自動查出數據,找到程序,進行計算、繪圖 、推理判斷等處理,並用專業語言回答你的問題,如溶液pH值的計算,任意溶液用酸、鹼進行滴定時操作規程的設計。
計算化學是理論化學的一個分支。

1.利用計算機程序解量子化學方程來計算物質的性質(如能量,偶極距,振動頻率等),用以解釋一些具體的化學問題。這是一個計算機科學與化學的交叉學科。

2.利用計算機程序做分子動力學模擬。

❹ 問化學人士,如何,去哪查找化合物的XRD標准譜圖

有標准圖樣的書,不過好幾大本,也不好找。
想要分析的話可以使用pcpdfwin、jade、high score的專門的分析軟體,jade好用一些(個人感覺),可以上網搜一下,我以前是從小木蟲(http://emuch.net)上下的,連同標准資料庫pdf一共700M左右。
如果你單純只想和標准圖樣比較一下的話,試著上網搜一下看有沒有氧化鐵的標准圖樣,或者你留一下郵箱我給你發一下。

❺ 結構化學在哪個資料庫

ChemBrain XTE V3.5三維分子結構化學資料庫

中國期刊全文資料庫 > 期刊導航 > 核心期刊導航 > 化學類 > 結構化學

NMRShiftDB- 提供有機分子結構及其核磁共振( NMR )的化學位移。nmrshiftdb含有超過22000有機化合物的化學位移數據和19000個譜圖。你可以通過結構、化學位移和核(nucleus?what?)檢索記錄。 NMRShiftDB完全開放,它可以通過編程方式訪問,並且運行在線資料庫的軟體源代碼也可以免費下載。 人用戶可以提交自己的譜圖或者位移數據,以供別人審閱或者列入資料庫中。

Chemical Structure Lookup Service (CSLS)- 一個化學結構目錄。如果你用過Metacrawler, 那麼你應該了解SCLS的原理,即從多個免費化學資料庫種查找數據。你可以通過IUPAC名稱、InChI、結構、SMILES和一系列的分子特徵查找超過兩千七百萬種化合物。你的搜索結構種會包括含有你所要搜索的分子的資料庫的鏈接。用戶界面不止是不好看的問題了,簡直是太爛了。如果你不在意用戶界面的話,CSLS可能是這個列表中最有用的服務之一。

❻ 在哪裡可以查詢已知化合物的各種譜圖

目前還沒有免費的資料庫。 一般XRD圖譜無機物比較多,在買儀器時都會帶有一些資料庫。有機分子的XRD標准譜圖比較少見。 可以在一些晶體文獻上查到單晶數據,如果有cif文件就更好了,可以通過軟體轉成XRD圖譜。

❼ 化合物目錄資料庫 exempt什麼意思

exempt 英[ɪgˈzempt]
美[ɪɡˈzɛmpt]
vt. 使免除,豁免;
adj. 被免除的,被豁免的;
n. 被免除(義務,責任)的人; 免稅人;
[網路] 豁免; 多半是免稅的意思; 免除的;
[例句]The Minimum Wage Ordinance does not apply to a work experience student ring a period of exempt student employment.
《最低工資條例》不適用於正處於獲豁免學生僱用期的工作經驗學員。
[其他] 第三人稱單數:exempts 現在分詞:exempting 過去式:exempted 過去分詞:exempted 形近詞: preempt

❽ 如何利用reaxys資料庫查詢有機物的質譜

reaxys中化學物質的性質那一部分,波譜中如果有的話會顯示出來的

❾ 哪裡可查到化合物的核磁共振氫譜圖

大學里的圖書館都有那個核磁共振氫譜圖的書!!!網上的,你試下google的學術搜索~~~

❿ 水和氮磷等無機無毒污染物稱為什麼

導讀
紅外光譜是我們實驗猿們最常見的分子光譜之一,本文是小析姐搜羅教科書和網路資料吐血整理而成,內容極度舒適,強烈建議收藏並轉發。
一、啥是光譜呢?
1、什麼是光譜呢?
光譜分析是一種根據物質的光譜來鑒別物質及確定它的化學組成、結構或者相對含量的方法。 按照分析原理,光譜技術主要分為吸收光譜,發射光譜和散射光譜三種 ;按照被測位置的形態來分類,光譜技術主要有原子光譜和分子光譜兩種。 紅外光譜屬於分子光譜,有紅外發射和紅外吸收光譜兩種,常用的一般為紅外吸收光譜。
光譜成因電子躍遷
2、光譜的分類(按測量形態分)
二. 紅外吸收光譜的基本原理是什麼?
分子運動有平動,轉動,振動和電子運動四種,其中後三種為量子運動。分子從較低的能級E1,吸收一個能量為hv的光子,可以躍遷到較高的能級E2,整個運動過程滿足能量守恆定律E2-E1=hv。能級之間相差越小,分子所吸收的光的頻率越低,波長越長。
1、紅外吸收光譜的成因
紅外吸收光譜是由分子 振動和轉動能級躍遷 所引起的, 組成化學鍵或官能團的原子處於不斷振動(或轉動)的狀態,其振動頻率與紅外光的振動頻率相當。所以,用紅外光照射分子時,分子中的化學鍵或官能團可發生振動(或轉動)吸收,不同的化學鍵或官能團吸收頻率不同,在紅外光譜上將處於不同位置,從而可獲得分子中含有何種化學鍵或官能團的信息。
分子的轉動能級差比較小,所吸收的光頻率低,波長很長,所以分子的純轉動能譜出現在遠紅外區。振動能級差比轉動能級差要大很多,分子振動能級躍遷所吸收的光頻率要高一些,分子的純振動能譜一般出現在中紅外區。(註:分子的電子能級躍遷所吸收的光在可見以及紫外區,屬於紫外可見吸收光譜的范疇)
值得注意的是,只有當振動發生時伴隨有分子的偶極矩發生變化,該振動才具有紅外活性(註:如果振動時,分子的極化率發生變化,則該振動具有拉曼活性)。
換言之,紅外吸收光譜產生的條件:
應滿足如下兩條
(1)輻射應具有能滿足物質產生振動躍遷所需的能量。
(2)輻射與物質間有相互偶合作用。
對稱分子 :
沒有偶極矩,輻射不能引起共振,無紅外活性,如,N2、O2、Cl2等。
非對稱分子 :
有偶極矩,紅外活性。
2、分子的主要振動類型
雙原子分子的振動
雙原子分子中的原子以平衡點未中心,以非常小的真服(與原子核之間的距離相比)做周期性的振動,可以近似的看做簡諧振動。
多原子分子的振動
伸縮振動原子沿鍵軸方向伸縮,鍵長發生變化而鍵角不變的振動,可分為對稱伸縮和不對稱伸縮,變形振動(又稱彎曲振動或變角振動)基團鍵角發生周期變化而鍵長不變的振動成為變形振動,分為面內彎曲和面外彎曲振動
3、紅外光譜和紅外譜圖的分區
通常將紅外光譜分為三個區域:近紅外區、中紅外區和遠紅外區。一般說來,近紅外光譜是由分子的倍頻、合頻產生的;中紅外光譜屬於分子的基頻振動光譜;遠紅外光譜則屬於分子的轉動光譜和某些基團的振動光譜。
來個直觀的列表瞅瞅
區域
λ/μm
/cm-1
能級躍遷類型
近紅外區(泛頻區)
0.78-2.5
12800-4000
OH、NH及CH鍵的倍頻吸收
中紅外區(基本振動區)
2.5-50
4000-200
分子振動,伴隨轉動
遠紅外區(轉動區)
50-1000
200-10
分子轉動,晶格振動
(註:由於絕大多數有機物和無機物的基頻吸收帶都出現在中紅外區,因此中近紅外光譜儀紅外區是研究和應用最多的區域,積累的資料也最多,儀器技術最為成熟。通常所說的紅外光譜即指中紅外光譜)
按吸收峰的來源,可以將中紅外光譜圖大體上分為特徵頻率區(2.5~7.7 μm,即4000-1330 cm-1)以及指紋區(7.7~16.7μm,即1330-400 cm-1)兩個區域。其中特徵頻率區中的吸收峰基本是由基團的伸縮振動產生,數目不是很多,但具有很強的特徵性,因此在基團鑒定工作上很有價值,主要用於鑒定官能團。
如羰基,不論是在酮、酸、酯或醯胺等類化合物中,其伸縮振動總是在5.9μm左右出現一個強吸收峰,指紋區的情況不同,該區峰多而復雜,沒有強的特徵性,主要是由一些單鍵C-O、C-N和C-X(鹵素原子)等的伸縮振動及C-H、O-H等含氫基團的彎曲振動以及C-C骨架振動產生。當分子結構稍有不同時,該區的吸收就有細微的差異。這種情況就像每個人都有不同的指紋一樣,因而稱為指紋區。指紋區對於區別結構類似的化合物很有幫助。
典型有機化合物的重要基團頻率
4、紅外光譜是定性分析手段還是定量分析手段?有何應用?
紅外吸收光譜主要用於定性分析分子中的官能團,也可以用於定量分析(較少使用,特別是多組分時定量分析存在困難)。紅外光譜對樣品的適用性相當廣泛,固態、液態或氣態樣品都能應用,無機、有機、高分子化合物都可檢測。
常見的,對於未知產物進行分析時,紅外能夠給出官能團信息,結合質譜,核磁,單晶衍射等其他手段有助於確認產物的結構(應用最廣泛);在催化反應中,紅外,特別是原位紅外有著重要的作用,可以用於確定反應的中間產物,反應過程中催化劑表面物種的吸附反應情況等;通過特定物質的吸附還可以知道材料的性質,比如吡啶吸附紅外可以測試材料的酸種類和酸量等,CO吸附的紅外可以根據其出峰的情況判斷材料上CO的吸附狀態,進而知道催化劑中金屬原子是否是以單原子形式存在等。
5. 紅外光譜的解析一般通過什麼方法?有哪些重要的資料庫?
光譜的解析一般首先通過特徵頻率確定主要官能團信息。單純的紅外光譜法鑒定物質通常採用比較法,即與標准物質對照和查閱標准譜的方法,但是該方法對於樣品的要求較高並且依賴於譜圖庫的大小。如果在譜圖庫中無法檢索到一致的譜圖,則可以用人工解譜的方法進行分析,這就需要有大量的紅外知識及經驗積累。大多數化合物的紅外譜圖是復雜的,即便是有經驗的專家,也不能保證從一張孤立的紅外譜圖上得到全部分子結構信息,如果需要確定分子結構信息,就要藉助其他的分析測試手段,如核磁、質譜、紫外光譜等。
重要的紅外譜圖資料庫主要有:
Sadtler紅外光譜資料庫:http://www.bio-rad.com/zh-cn/proct/ir-spectral-databases
日本NIMC有機物譜圖庫:http://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi
上海有機所紅外譜圖資料庫:http://chemdb.sgst.cn/scdb/main/irs_introce.asp
ChemExper化學品目錄CDD:http://www.chemexper.com/
FTIRsearch:http://www.ftirsearch.com/
NIST Chemistry WebBook:http://webbook.nist.gov/chemistry
6、影響振動頻率的因素
在正式討論特徵基團的振動頻率之前,先簡單了解下影響振動頻率的主要因素,這對於確認特徵基團的歸屬有重要的幫助。
影響紅外振動頻率的因素可以分為內部因素和外在條件兩種,其中外在條件主要指樣品的物態(氣,液,固),溶劑種類,測試溫度,測試儀器等。內部因素主要是分子結構方面的影響, 包括誘導效應,共軛效應,空間效應,振動耦合,Fermi共振,分子對稱性,氫鍵作用等。
(1)誘導效應:基團附近有不同電負性的取代基時,由於誘導效應引起分子中電子雲分布的變化,從而引起鍵力常數的變化,使基團吸收頻率變化。
吸電子基使鄰近基團吸收波數升高,給電子基則使鄰近基團吸收波數下降。吸電子能力越強,升高的越多,給電子能力越強,下降越明顯。
舉例:CH3CHO (1713), CH3COCH3 (1715), CH3COCl (1806).
Cl的吸電子能力>甲基>H,因此對於C=O的振動頻率而言,醯氯>酮>醛
註:1). 這種誘導效應的存在對於判別C=O的歸屬有很重要的意義,後面還會提到。
2). 誘導效應存在遞減率:誘導效應是一種靜電誘導作用,其作用隨所經距離的增大而迅速減弱
(2)共軛效應:在共軛體系中由於原子間的相互影響而使體系內的π電子 (或p電子)分布發生變化的一種電子效應。共軛效應使共軛體系的電子雲密度以及鍵長平均化,雙鍵略有伸長,單鍵略有縮短。
主要的共軛體系包括π-π共軛和p-π共軛(σ-π超共軛等其他共軛形式影響相對較小)。
基團與吸電子基共軛,振動頻率增加;基團與給電子基團共軛,振動頻率下降。
註:共軛效應沿共軛體系傳遞不受距離的限制,因而可以顯著地影響基團的振動頻率。
舉例:CH3COCH3 (1715), CH3-CH=CH-COCH3 (1677), Ph-CO-Ph (1665).
C=O與雙鍵形成π-π共軛,雙鍵為給電子基團,因此C=O的振動頻率下降;而當C=O與苯環形成共軛體系時,C=O的振動頻率下降得更多。
(3)氫鍵:形成氫鍵(特別是分子內氫鍵)往往使吸收頻率向低波數移動,吸收強度增加並變寬。
7、常見基團的特徵振動頻率
各種基團在紅外譜圖的特定區域會出現對應的吸收帶,其位置大致固定。常見基團的特徵振動頻率可以大致分為四個區域:
A. 4000-2500 cm-1為X-H的伸縮振動區(O-H, N-H, C-H,S-H等)
B. 2500-2000 cm-1為三鍵和累積雙鍵伸縮振動區(C≡C,C≡N,C=C=C, N=C=S等);
C. 2000-1550 cm-1為雙鍵的伸縮振動區(主要是C=C和C=O等);
D. 1550- 600 cm-1主要由彎曲振動,C-C, C-O,C-N單鍵的伸縮振動。
具體而言:
(1) O-H (3650 ~ 3200 cm-1): 確定醇、酚、酸. 其中,自由的醇和酚振動頻率為3650-3600 cm-1(伯:3640,仲:3630,叔:3620,酚:3610. why? 考慮誘導和共軛效應), 存在分子間氫鍵時,振動頻率向低波數移動,大致范圍為3500-3200 cm-1. 羧酸的吸收頻率在3400 ~ 2500 cm-1(締合)
(2) N-H(3500-3100):胺和醯胺
(3) C-H (3300-2700 cm-1) : C-H的振動頻率存在明顯的分界線,3000 cm-1以上為不飽和C上的C-H,3000以下為飽和C上的C-H. 醛基C-H較為特殊,在2900-2700 cm-1.
(4) 不飽和鍵的伸縮振動吸收 :非常有價值的一個區域
三鍵和累積雙鍵:2500-2000 cm-1.
C=O雙鍵(1850-1630 cm-1)在很多化合物中都有出現,而根據誘導效應,可以明顯看到差異:酸酐>醯氯>酮,酸>醛,酯>醯胺. (思考:如果是羧酸鹽,C=O應該在哪呢?)
C=C雙鍵中苯環由於存在共軛效應(1600-1450,一般為多峰),其振動頻率一般比烯烴(1650-1640 cm-1)要低
註:紅外振動吸收峰的強度和鍵的極性相關,極性越強,強度越大。因此C=O的峰一般比C=C雙鍵要大。
(5) C-O伸縮振動(醇,酚,酸,酯,酸酐 ):1300-1000 cm-1
這類振動產生的吸收帶常常是該區中的最強峰。
醇的C—O在1260~1000 cm-1;酚的C—O在1350~1200 cm-1;醚的C—O在1250~1100 cm-1(飽和醚常在1125 cm-1出現;芳香醚多靠近1250 cm-1)。
(6) C-H彎曲振動:
烷基:-CH3(1460, 1380 cm-1),-CH2-(1465 cm-1), -CH-(1340 cm-1)
烯烴:1000-650 cm-1
三、無機化合物的特徵紅外頻率
1. 為什麼無機物不經常做紅外光譜?
多數情況下,人們主要採用紅外光譜來分析有機官能團,而採用紅外對無機物進行分析就要少得多了,很多教材上也沒有特別地討論無機物的紅外吸收。實際上,對於無機材料而言,採用XRD來定性分析要比紅外光譜更加直接,而一些細節的分析採用拉曼光譜要更方便一些,因為拉曼光譜可以測量的范圍更廣(4000-40 cm-(1),而很多無機物,特別是氧化物的譜峰信息都是在800 cm-1以下的這個范圍。此外,拉曼制樣簡單,不受水等干擾,解析度也高一些。
番外篇:這里只是相對目前的研究而言哈,實際上早期人們對於無機物的紅外譜圖也進行了大量的研究,這里推薦感興趣的朋友看看《無機和配位化合物的紅外和拉曼光譜》一書,作者:中本一雄(黃德如 汪仁慶譯)。書中從群論出發,對不同結構特徵的無機化學物進行了非常全面的討論(從雙原子分子到四原子分子,八面體分子,X2Y10分子等)
2、一般用紅外光譜來分析無機物中的什麼信息?
紅外光譜是分子振動光譜,所以萬變不離其宗,紅外光譜測試無機物和有機物是一樣的,都是研究在振動中伴隨有偶極矩變化的基團。常見的所研究的無機物主要包括H2O, CO, 氧化物,無機鹽中的陰離子,配位化合物等。
對於無機鹽而言,陽離子類型不同會影響到其陰離子的振動頻率。例如,對於無水鹼性氫氧化物而言,OH-的伸縮振動頻率都在3550—3720 cm-1范圍內。其中,KOH為3678 cm-1,NaOH在3637 cm-1, Mg(OH)2為3698 cm-1,Ca(OH)2為3644 cm-1。
在實際應用中,無機物的紅外光譜可以用來干什麼呢?舉個簡單的離子,對於氧化物而言,其表面的結構羥基和許多應用都有密切關系(比如催化,生物醫用等)。而這些表面羥基採用XRD肯定是定不出來的,這個時候採用紅外進行表徵就具有優勢了,特別是原位紅外,可以研究在不同溫度下表面羥基的變化情況,進而跟其性能聯系起來。
另外,紅外光譜和XRD相結合對於樣品的定性分析也是非常有幫助的,因為XRD並不是萬能的,有很多物質實際上是沒有標准譜圖的,而紅外譜圖能夠提供一些結構上的佐證,對於確定物質組成是很有幫助的。
3、常見無機物中陰離子在紅外區的吸收頻率如下表所示
如果大家對於常見陰離子的峰位置有什麼不確定的話,可以看看上面這個表。如果想了解得更加全面,或者想從群論等理論的角度進行了解,還是推薦大家看《無機和配位化合物的紅外和拉曼光譜》。
4、磷,硫相關的紅外特徵頻率范圍
四、紅外光譜樣品制備
1、固體樣品的制備
(1) 溴化鉀壓片法。
將光譜級KBr磨細乾燥,置於乾燥器備用,取1~2mg的乾燥樣品,並以1:(100~200)比例的乾燥KBr粉末,一起在瑪瑙研缽中於紅外燈下研磨,直到完全研細混勻(粉末粒徑2um左右)。將研好的粉末均勻放入壓膜器內,抽真空後,加壓至50~100Mpa,得到透明或半透明的薄片。
(2)糊狀法。
所謂糊狀法指把樣品的粉末與糊劑如液體石蠟一起研磨成糊狀再進行測定的方法。
(3)溶液法。
對於不易研成細末的固體樣品,如果能溶於溶劑,可製成溶液,按照液體樣品測試的方法進行測試
(4) 薄膜法。
一些高聚物樣品,一般難於研成細末,可製成薄膜直接進行紅外光譜測試。
(5) 顯微切片。
將高聚物用顯微切片的方法制備薄膜來進行紅外光譜測量。
2、液體樣品的制備
不易揮發、無毒且具有一定黏度的液體樣品,可直接塗於NaCl或KBr晶片上進行測試;
易揮發的液體樣品可以灌注於液體池中進行測量。
3、氣體樣品的制備
氣體樣品通常灌注於氣體樣槽中測定。
五、紅外光譜圖的解析
1、譜圖解析的一般步驟
(1)根據分子式,計算未知物的不飽和度f;
(2)根據未知物的紅外光譜圖找出主要的強吸收峰;習慣上把中紅外區分成如下五個區域來分析:
4000~2500cm-1:這是X-H(X包括C、N、O、S等)伸縮振動區。主要的吸收基團有羥基、胺基、烴基等。
2500~2000cm-1:這是叄鍵和累積雙鍵的伸縮振動區。
2000~1500cm-1:這是雙鍵伸縮振動區,也是紅外譜圖中很主要的區域。在這個區域中有重要的羰基吸收、碳-碳雙鍵吸收、苯環的骨架振動及C=N、N=O等基團的吸收。
1500~1300cm-1:該區主要提供C-H彎曲振動的信息。
1300~400cm-1:這個區域中有單鍵的伸縮振動頻率、分子的骨架振動頻率及反映取代類型的苯環和烯烴面外的碳氫彎曲振動頻率等的吸收。
(3)通過標准圖譜驗證解析結果的正確性。
下圖是一個未知的化合物紅外光譜圖
2、紅外光譜解析要點及注意事項
(1)解析時應兼顧紅外光譜的三要素,即峰位、強度和峰形;
(2)注意同一基團的幾種振動吸收峰的相互映證;
(3)判斷化合物是飽和還是不飽和;
(4)注意區別和排除非樣品譜帶的干擾。
處理紅外譜圖時,一般使用origin軟體。而origin軟體的具體使用,請參閱材料人分享的關於origin的學術干貨。紅外一般都是對化合物進行定性分析,其定量分析較少,一般採用朗伯比爾定律。紅外譜圖的分析需要大量經驗,如果大家平時在科研上使用得較多,筆者建議多積累分析經驗。篇幅有限,不做過多介紹,如有需要紅外分析軟體,及具體操作問題,歡迎讀者留言。
六、紅外光譜聯用技術
氣相色譜-傅里葉變換紅外聯用(GC-FTIR)
液相色譜-傅里葉變換紅外聯用(HPLC-FTIR)
熱分析-傅里葉變換紅外聯用(TGA-FTIR)
超臨界流體色譜-傅里葉變換紅外聯用(SFC-FTIR)
流動注射分析-傅里葉變換紅外聯用(FIA-FTIR)
七、紅外光譜儀基本結構及維護
1、紅外光譜儀結構
紅外光譜儀通常由光源,單色器,探測器和計算機處理信息系統組成。根據分光裝置的不同,分為色散型和干涉型。對色散型雙光路光學零位平衡紅外分光光度計而言,當樣品吸收了一定頻率的紅外輻射後,分子的振動能級發生躍遷,透過的光束中相應頻率的光被減弱,造成參比光路與樣品光路相應輻射的強度差,從而得到所測樣品的紅外光譜。
2、紅外光譜儀儀器在日常中使用中保養的注意事項

(1)測定時實驗室的溫度應在15-30℃,相對濕度應在65%以下,所用電源應配備有穩壓裝置和接地線。因要嚴格控制室內的相對濕度,因此紅外實驗室的面積不要太大,能放得下必須的儀器設備即可,但室內一定要有除濕裝置。
(2)如,所用的是單光朿型傅里葉紅外分光光度計(目前,應用最多),實驗室里的CO2含量不能太高,因此實驗室里的人數應盡量少,無關人員最好不要進入,還要注意適當通風換氣。
(3)如供試品為鹽酸鹽,因考慮到在壓片過程中可能出現的離子交換現象,標准規定用氯化鉀(也同溴化鉀一樣預處理後使用)代替溴化鉀進行壓片,但也可比較氯化鉀壓片和溴化鉀壓片後測得的光譜,如二者沒有區別,則可使用溴化鉀進行壓片。
(4)為防止儀器受潮而影響使用壽命,紅外實驗室應經常保持乾燥,即使儀器不用,也應每周開機至少兩次,每次半天,同時開除濕機除濕。特別是霉雨季節,最好是能每天開除濕機。
(5)紅外光譜測定最常用的試樣制備方法是溴化鉀(KBr)壓片法(葯典收載品種90%以上用此法),因此為減少對測定的影響,所用KBr最好應為光學試劑級,至少也要分析純級。使用前應適當研細(200目以下),並在120℃以上烘4小時以上後置乾燥器中備用。如發現結塊,則應重新乾燥。制備好的空KBr片應透明,與空氣相比,透光率應在75%以上。
(6)壓片法時取用的供試品量一般為1-2mg,因不可能用天平稱量後加入,並且每種樣品的對紅外光的吸收程度不一致,故常憑經驗取用。一般要求所沒得的光譜圖中絕大多數吸收峰處於10%-80%透光率范圍在內。最強吸收峰的透光率如太大(如,大於30%),則說明取樣量太少;相反,如最強吸收峰為接近透光率為0%,且為平頭峰,則說明取樣量太多,此時均應調整取樣量後重新測定。
(7)測定用樣品應乾燥,否則應在研細後置紅外燈下烘幾分鍾使乾燥。試樣研好並具在模具中裝好後,應與真空泵相連後抽真空至少2分鍾,以使試樣中的水分進一步被抽走,然後再加壓到0.8-1GPa(8-10T/cm2)後維持2-5min。不抽真空將影響片子的透明度。
(8)壓片時KBr的取用量一般為200mg左右(也是憑經驗),應根據製片後的片子厚度來控制KBr的量,一般片子厚度應在0.5mm以下,厚度大於0.5mm時,常可在光譜上觀察到干涉條紋,對供試品光譜產生干擾。
(9)壓片時,應先取供試品研細後再加入KBr再次研細研勻,這樣比較容易混勻。研磨所用的應為瑪瑙研缽,因玻璃研缽內表面比較粗糙,易粘附樣品。研磨時應按同一方向(順時針或逆時針)均勻用力,如不按同一方向研磨,有可能在研磨過程中使供試品產生轉晶,從而影響測定結果。
研磨力度不用太大,研磨到試樣中不再有肉眼可見的小粒子即可。試樣研好後,應通過一小的漏鬥倒入到壓片模具中(因模具口較小,直接倒入較難),並盡量把試樣鋪均勻,否則壓片後試樣少的地方的透明度要比試樣多的地方的低,並因此對測定產生影響。另外,如壓好的片子上出現不透明的小白點,則說明研好的試樣中有未研細的小粒子,應重新壓片。

(10)壓片用模具用後應立即把各部分擦乾凈,必要時用水清洗干凈並擦乾,置乾燥器中保存,以兔銹蝕。
傅里葉變換紅外光譜(Fourier Transform infrared spectros)簡寫為FTIR。傅里葉紅外光譜法是通過測量干涉圖和對干涉圖進行傅里葉變化的方法來測定紅外光譜。紅外光譜的強度h(δ)與形成該光的兩束相干光的光程差δ之間有傅里葉變換的函數關系。傅立葉變換測定紅外光譜用於控制兩相干光光程差的干涉儀測量得到下式表示的光強隨光程差變化的干涉圖其中v為波數,將包含各種光譜信息的干涉圖進行傅立葉變換得實際的吸收光,傅立葉變換紅光譜具有高檢測靈敏度、高測量精度、高解析度、測量速度快、散光低以及波段寬等特點。隨著計算機技術的不斷進步,FTIR也在不斷發展。該方法現已廣泛地應用於有機化學、金屬有機,無機化學、催化、石油化工、材料科學、生物、醫葯和環境等領域。
附錄一 異常譜帶的介紹
波數
化合物結構
來源
668
CO2
大氣中CO2 吸收,正或負
697
聚苯乙烯
磨損的聚苯乙烯瓶子或其他機械處理樣品過程中
719
聚乙烯
實驗室中常使用聚乙烯產品,有時候作為污染物出現
730
聚乙烯
同上
787
CCl4
使用CCl4後沒有處理干凈
794
CCl4
CCl4氣體,同上
823
KNO3
無機硝酸鹽與溴化鉀反應物
837
NaNO3
氧化氮與窗片上的水汽生成,光源點燃有時候出現
980
K2SO4
無機硫酸鹽與溴化鉀離子交換的反應物
1110-1053
Si-O
使用玻璃研缽,由玻璃粉末引起的譜帶,寬峰
1110
Me-O
研缽或其它物品的灰塵造成的污染,寬
1265
Si-CH3
使用硅樹脂有此污染
1365
NaNO3
同837
2800~2900
(CH2)n
烴類物質
1378
NO3-
溴化鉀的雜質,與CH3位置相近
1428
CO32-
溴化鉀的碳酸鹽,及其它雜質
1613-1515
COO-
鹼金屬鹵代鹽,溴化鉀與羧酸反應生成的羧酸陰離子引起,壓片時能產生
1639
H2O
少量夾帶水的吸收
1764-1696
>C=O
葯品的瓶蓋,塗層,增塑劑等等的污染
1810
COCl2
氯仿暴露在空氣中或日光氧化生成少量光qi的譜帶
1996
BO3-
鹼金屬鹵代鹽,NaCl中的偏硼酸離子引起
2326
CO2
CO2吸收
2347
CO2
正或負的大氣中CO2吸收
3450
H2O
壓片中KBr含的微量水的譜帶,寬,常見
3650
H2O
石英管出現附著水引起的銳譜帶
3704
H2O
近紅外區厚吸收池使用四氯化碳或烴類溶劑中非締合水的-OH吸收,譜帶銳
附錄二、紅外透光材料介紹
選擇紅外透光材料要根據測定波長,機械強度,穩定性和經濟性來考慮,文獻報導的透光材料很多,但是實際應用的並不太多 :
材質
特點
溴化鉀 KBr :
易潮解,透過波長7800~400cm-1,(25μm以下)透過率大於92%,不易低溫;
氯化鈉 NaCl :
易潮解,透過波長500~625cm-1,(2~16μm) 不易低溫;
氟化鈣 CaF 2:
不易潮解,透過波長7800~1100cm-1 (1~9μm),透過率大於90%,不耐機械沖擊;
氟化鎂 MgF2 :
不易潮解,透過波長0.11~8.5μm,透過率大於90%;
氟化鋇 BaF2:
不易潮解,透過波長7800~800cm-1(1~12μm)透過率大於90%;
金剛石 :
碳的一種,有Ⅰ型和Ⅱ型兩種,透光波長10cm-1,(1000μm)。它們在4~6μm(2300~1660cm-1)有吸收,Ⅰ型還在19~22μm和7~11μm有兩個吸收帶,據此可以鑒別金剛石的類型;
鍺 Ge :
純度越高透光越好,透光性受純度和厚度的影響,23μm和40μm以外可以使用,在120℃時不透明;
硅 Si :
耐機械和熱沖擊,可達15μm,但是,在9μm(1110cm-1)時有一吸收帶;
熱壓塊 :
用紅外晶體的粉末加壓成型,有MgF2,ZnS,CaF2,ZnSe,MgO等,混合熱壓塊的機械性能超過晶體;
塑料 :
高密度聚乙烯在20~1000μm的遠紅外區可以使用,還有聚乙烯,聚四氟乙烯等薄片也可以使用;
氯化銀 AgCl :
軟,不易破裂,435cm-1(23μm以下),易變黑,貴;
溴化銀 AgBr :
軟,不易破裂,285cm-1(35μm以下),作為全反射材料;
硫化鋅 ZnS :
不易潮解,透過波長7800~700cm-1,(1~14μm)透過率大於85%;
溴(碘)化鉈 :
TiI 58%和TiBr 42%混晶,不易裂,透過波長7800~200cm-1,(1~50μm),透
過率大於92%,折射率高,全反射材料,貴,有毒;
硒化鋅 ZnSe :
不易潮解,透過波長7800~440cm-1,(1~23μm),透過率大於68%;
石英 SiO2 :
不易潮解,透過波長190nm~4.5μm,透過率大於92%;
氟化鋰 LiF :
120~7000cm-1,易潮解變形;
砷化鎵 GaAs :
2~14μm,耐擦拭,可代替硒化鋅。

(內容來源:儀器分析教材 由小析姐整理編輯)