當前位置:首頁 » 數據倉庫 » python遍歷資料庫
擴展閱讀
webinf下怎麼引入js 2023-08-31 21:54:13
堡壘機怎麼打開web 2023-08-31 21:54:11

python遍歷資料庫

發布時間: 2022-10-28 14:28:41

A. python怎樣遍歷.py的內容

列表的遍歷
方法一:通過for循環
li = [i for i in range(10)]
for i in li:
print(i)
方法二:通過while循環
# 雖然for循環已經很好用了,但是在有些情況下,使用while循環可以更靈活
# 只需要將判斷條件設置為小於列表長度,即可完成列表通過while循環的遍歷
li = [i for i in range(10)]
i = 0
while i < len(li):
print(li[i])
i += 1
方法三:配合enumerate使用,同時獲取列表的索引
li = [i + 1 for i in range(10)]

# 此時,i為一個元組,元組的第一個元素為索引,第二個元素為原列表的元素
# 因此,在遍歷列表的同時,需要同時獲取坐標的情況下,可以配合enumerate()一起使用
for i in enumerate(li):
print(i)
字典的遍歷
字典的遍歷和列表有一些不同,因為字典有鍵和值兩個關鍵部分。默認的遍歷情況,是遍歷字典的鍵,當然,可以通過字典的鍵取得值,也可以直接遍歷值,或者直接遍歷鍵和值。

方法一:直接使用for循環
直接使用for循環對一個字典進行遍歷,默認取得的是字典的鍵

dt = {i: i + 1 for i in range(10)}

for i in dt:
print("字典的鍵:", i) # 字典的鍵
print("字典的值:", dt[i]) # 字典的值
方法二:遍歷dict.keys()
這種方法與方法一的效果其實是一樣的,同樣是獲取字典的鍵

dt = {i: i + 1 for i in range(10)}

for i in dt.keys():
print("字典的鍵:", i) # 字典的鍵
print("字典的值:", dt[i]) # 字典的值
方法三:遍歷dict.values()
這種方法與方法一和二很不相同,因為它只獲取了字典的值

dt = {i: i + 1 for i in range(10)}

# 這是很特殊的方法,因為它沒有獲取字典的鍵
for i in dt.values():
print("字典的值:", i) # 此時i不再是字典的鍵,而是值
方法四:遍歷dict.items()
這種方法一般來說要更好,因為它同時獲取到了字典的鍵和值,而且性能上要高於先獲取鍵,再通過鍵獲取對應的值

dt = {i: i + 1 for i in range(10)}

for i in dt.items():
print("字典的鍵值對:", i)
print("字典的鍵:", i[0])
print("字典的值:", i[1])
總結
1,列表的遍歷比較簡單,除了配合enumerate()使用,可以同步獲取索引以外,並沒有特別值得糾結的。

2,字典的遍歷方法比較多,其中第四種是能適用於一切情況的,前兩種也可以適用於一切情況,但是如果你同時需要獲取鍵和值,性能不如第四種要好。第三種比較特別,除非你真的只需要字典的值,否則它在多數情況下是不能夠滿足需求的。

B. Python中如何遍歷指定目錄下的所有文件

例如:在C:\TDDOWNLOAD目錄下有a.txt、b.txt兩個文件,另有\sub1子文件夾,C:\TDDOWNLOAD\sub1下又有c.txt、d.txt兩個文件。 1. os.walk os.walk()返回一個三元素的tuple:當前路徑、子文件夾名稱、文件列表。>>> import os>>> def fun( path ):... for root, dirs, files in os.walk( path ):... for fn in files:... print root, fn... >>> fun( r'C:\TDDOWNLOAD' )C:\TDDOWNLOAD a.txtC:\TDDOWNLOAD b.txtC:\TDDOWNLOAD\sub1 c.txtC:\TDDOWNLOAD\sub1 d.txt>>> 2. glob.glob glob.glob()只接受一個參數,這個參數既代有路徑,又代有匹配模式,返回值為一個列表。注意,glob.glob()無法直接穿透子文件夾,需要自己處理:>>> def fun( path ):... for fn in glob.glob( path + os.sep + '*' ): # '*'代表匹配所有文件... if os.path.isdir( fn ): # 如果結果為文件夾... fun( fn ) # 遞歸... else:... print fn... >>> fun( r'C:\TDDOWNLOAD' )C:\TDDOWNLOAD\a.txtC:\TDDOWNLOAD\b.txtC:\TDDOWNLOAD\sub1\c.txtC:\TDDOWNLOAD\sub1\d.txt>>> '*'為匹配模式,代表匹配所有文件,只有這樣才能將子文件夾查出來,以便遞歸深入,探查下一層的文件。

C. python如何遍歷2個list

找兩個list元素少的,index遍歷完所有的,遍歷完後,把此時的index記住。然後直接循環那個較長list的剩餘部分。代碼可以參考下面的

list1=[1,2,3,4,5,6,7]
list2=['a','b','c','d']
min_length=len(list1)iflen(list1)<len(list2)elselen(list2)
max_length=len(list1)iflen(list1)>len(list2)elselen(list2)
max_list=list1iflen(list1)>len(list2)elselist2
foriinrange(min_length):
printlist1[i]
printlist2[i]
forjinrange(i+1,max_length):
printmax_list[j]

D. Python 如何遍歷伺服器上所有同一類型的文件

例如:在C:\TDDOWNLOAD目錄下有a.txt、b.txt兩個文件,另有\sub1子文件夾,C:\TDDOWNLOAD\sub1下又有c.txt、d.txt兩個文件。

1. os.walk
os.walk()返回一個三元素的tuple:當前路徑、子文件夾名稱、文件列表。
>>> import os
>>> def fun( path ):
... for root, dirs, files in os.walk( path ):
... for fn in files:
... print root, fn
...
>>> fun( r'C:\TDDOWNLOAD' )
C:\TDDOWNLOAD a.txt
C:\TDDOWNLOAD b.txt
C:\TDDOWNLOAD\sub1 c.txt
C:\TDDOWNLOAD\sub1 d.txt
>>>

2. glob.glob
glob.glob()只接受一個參數,這個參數既代有路徑,又代有匹配模式,返回值為一個列表。注意,glob.glob()無法直接穿透子文件夾,需要自己處理:
>>> def fun( path ):
... for fn in glob.glob( path + os.sep + '*' ): # '*'代表匹配所有文件
... if os.path.isdir( fn ): # 如果結果為文件夾
... fun( fn ) # 遞歸
... else:
... print fn
...
>>> fun( r'C:\TDDOWNLOAD' )
C:\TDDOWNLOAD\a.txt
C:\TDDOWNLOAD\b.txt
C:\TDDOWNLOAD\sub1\c.txt
C:\TDDOWNLOAD\sub1\d.txt
>>>

'*'為匹配模式,代表匹配所有文件,只有這樣才能將子文件夾查出來,以便遞歸深入,探查下一層的文件。

E. python如何訪問資料庫

1.背景:

python提供了很多資料庫介面, 常用的資料庫有 MS sql Server /mysql /oracle 等。

打開鏈接 https://wiki.python.org/moin/DatabaseInterfaces

是python 關於資料庫介面的一個總結 , 可以看到python支持的訪問的資料庫系統。

2.模塊:

python 主要是通過模塊和資料庫連接的。

2.1 安裝模塊:

如果使用anconda,本身就會集合很多模塊,不需要手動安裝。如果用pycharm就要手動安裝模塊。

安裝模塊流程:

下載模塊擴展包放到路徑下——>cmd找到相應路徑——> pip install +擴展包名字

下面列舉一些常用連接資料庫的模塊:pymssql / sqlite3/ PyMySQL/pyodbc/odbc/adodbapi

不同模塊連接的資料庫不同, 支持的版本系統有的也不一樣。但是大體用法都是相近的, 因為有DB-API

相關推薦:《Python教程》

3.Python DB-API

3.1背景:

在沒有DB-API 之前, 不同資料庫有不同的資料庫介面程序, 這就導致python 訪問 database 的介面程序非常混亂。如果我們學習了python 訪問 mysql 的介面程序, 然後要切換到另一個資料庫上, 我們還要在學習另外一個資料庫的介面程序。python DB-API就是為了解決介面程序混亂而生成的。有了DB-API, 在不同資料庫上移植代碼就變得簡單的多了。

3.2Python DB-API:

Python 定義了一套操作資料庫的 DB-API 介面,它是一個規范,定義了一系列必須的對象和資料庫存取方式,以便為不同的底層資料庫系統提供一致的訪問介面

這個鏈接就是python 官方給定的 DB-API 的說明 https://www.python.org/dev/peps/pep-0249/

3.3 Python DB--API的內容:

連接對象:

?Connect()創建連接:host/server /user/password/db connect方法生成一個connect對象, 我們通過這個對象來訪問資料庫。符合標準的模塊都會實現connect方法。

?close():關閉連接

?commit():提交當前事務。做出某些更改後確保已經進行了提交,這樣才可以將這些修改真正地保存到database中

?rollback() 回滾上一次調用 commit()以來對資料庫所做的更改

?cursor():創建游標。系統為用戶開通的一個數據緩沖區,用於存放SQL語句執行結果。cursor游標是有狀態的,它可以記錄當前已經取到結果的第幾個記錄了,因此,一般你只可以遍歷結果集一次。在上面的情況下,如果執行fetchone()會返回為空。這一點在測試時需要注意

游標對象:

?Execute()執行一個資料庫查詢或命令。 execute 執行sql 語句之後運行的結果不會直接output 出來 , 而是放到了一個緩存區, 要用 fetch語句+print 可以查詢sql運行的結果

?fetchone ()得到結果集的下一行

?fetchmany(size)得到結果集的下幾行

?fetchall()返回結果集中剩下的所有行

?rowcount 返回影響的行數

?Close()關閉游標對象

3.4Python DB--API的工作原理及流程:

如圖所示如果把python 和資料庫比作兩個不同的地點, connection 就是路, 能連接python和database。cursor就像在路上行駛的小貨車, 可以用於執行sql 語句, 以及存儲sql 運行的結果。

流程:

4.MS SQL Server 示例:

4.1 導入模塊、創建連接:

4.2 創建游標: 游標創建之後就可以對資料庫進行查詢更改了!

4.3對數據進行操作(創建表、插入行、更新數據、增加列、刪除行、列、表):

4.4 查詢 獲取行:

5.其他:

使用游標的時候要注意, 每次連接只能有一個游標查詢處於活躍狀態。 code演示:

execute()循環和 executemany() 插入100000 條數據測速:

F. python中如何遍歷json數組

1、創建python文件,testjson.py;

G. 如何用 Python 實現一個圖資料庫(Graph Database)

本文章是 重寫 500 Lines or Less 系列的其中一篇,目標是重寫 500 Lines or Less 系列的原有項目:Dagoba: an in-memory graph database。

Dagoba 是作者設計用來展示如何從零開始自己實現一個圖資料庫( Graph Database )。該名字似乎來源於作者喜歡的一個樂隊,另一個原因是它的前綴 DAG 也正好是有向無環圖 ( Directed Acyclic Graph ) 的縮寫。本文也沿用了該名稱。

圖是一種常見的數據結構,它將信息描述為若干獨立的節點( vertex ,為了和下文的邊更加對稱,本文中稱為 node ),以及把節點關聯起來的邊( edge )。我們熟悉的鏈表以及多種樹結構可以看作是符合特定規則的圖。圖在路徑選擇、推薦演算法以及神經網路等方面都是重要的核心數據結構。

既然圖的用途如此廣泛,一個重要的問題就是如何存儲它。如果在傳統的關系資料庫中存儲圖,很自然的做法就是為節點和邊各自創建一張表,並用外鍵把它們關聯起來。這樣的話,要查找某人所有的子女,就可以寫下類似下面的查詢:

還好,不算太復雜。但是如果要查找孫輩呢?那恐怕就要使用子查詢或者 CTE(Common Table Expression) 等特殊構造了。再往下想,曾孫輩又該怎麼查詢?孫媳婦呢?

這樣我們會意識到,SQL 作為查詢語言,它只是對二維數據表這種結構而設計的,用它去查詢圖的話非常笨拙,很快會變得極其復雜,也難以擴展。針對圖而言,我們希望有一種更為自然和直觀的查詢語法,類似這樣:

為了高效地存儲和查詢圖這種數據結構,圖資料庫( Graph Database )應運而生。因為和傳統的關系型資料庫存在極大的差異,所以它屬於新型資料庫也就是 NoSql 的一個分支(其他分支包括文檔資料庫、列資料庫等)。圖資料庫的主要代表包括 Neo4J 等。本文介紹的 Dagoba 則是具備圖資料庫核心功能、主要用於教學和演示的一個簡單的圖資料庫。

原文代碼是使用 JavaScript 編寫的,在定義調用介面時大量使用了原型( prototype )這種特有的語言構造。對於其他主流語言的用戶來說,原型的用法多少顯得有些別扭和不自然。

考慮到本系列其他資料庫示例大多是用 Python 實現的,本文也按照傳統,用 Python 重寫了原文的代碼。同樣延續之前的慣例,為了讓讀者更好地理解程序是如何逐步完善的,我們用迭代式的方法完成程序的各個組成部分。

原文在 500lines 系列的 Github 倉庫中只包含了實現代碼,並未包含測試。按照代碼注釋說明,測試程序位於作者的另一個代碼庫中,不過和 500lines 版本的實現似乎略有不同。

本文實現的代碼參考了原作者的測試內容,但跳過了北歐神話這個例子——我承認確實不熟悉這些神祇之間的親緣關系,相信中文背景的讀者們多數也未必了解,雖然作者很喜歡這個例子,想了想還是不要徒增困惑吧。因此本文在編寫測試用例時只參考了原文關於家族親屬的例子,放棄了神話相關的部分,盡管會減少一些趣味性,相信對於入門級的代碼來說這樣也夠用了。

本文實現程序位於代碼庫的 dagoba 目錄下。按照本系列程序的同意規則,要想直接執行各個已完成的步驟,讀者可以在根目錄下的 main.py 找到相應的代碼位置,取消注釋並運行即可。

本程序的所有步驟只需要 Python3 ,測試則使用內置的 unittest , 不需要額外的第三方庫。原則上 Python3.6 以上版本應該都可運行,但我只在 Python3.8.3 環境下完整測試過。

本文實現的程序從最簡單的案例開始,通過每個步驟逐步擴展,最終形成一個完整的程序。這些步驟包括:

接下來依次介紹各個步驟。

回想一下,圖資料庫就是一些點( node )和邊( edge )的集合。現在我們要做出的一個重大決策是如何對節點/邊進行建模。對於邊來說,必須指定它的關聯關系,也就是從哪個節點指向哪個節點。大多數情況下邊是有方向的——父子關系不指明方向可是要亂套的!

考慮到擴展性及通用性問題,我們可以把數據保存為字典( dict ),這樣可以方便地添加用戶需要的任何數據。某些數據是為資料庫內部管理而保留的,為了明確區分,可以這樣約定:以下劃線開頭的特殊欄位由資料庫內部維護,類似於私有成員,用戶不應該自己去修改它們。這也是 Python 社區普遍遵循的約定。

此外,節點和邊存在互相引用的關系。目前我們知道邊會引用到兩端的節點,後面還會看到,為了提高效率,節點也會引用到邊。如果僅僅在內存中維護它們的關系,那麼使用指針訪問是很直觀的,但資料庫必須考慮到序列化到磁碟的問題,這時指針就不再好用了。

為此,最好按照資料庫的一般要求,為每個節點維護一個主鍵( _id ),用主鍵來描述它們之間的關聯關系。

我們第一步要把資料庫的模型建立起來。為了測試目的,我們使用一個最簡單的資料庫模型,它只包含兩個節點和一條邊,如下所示:

按照 TDD 的原則,首先編寫測試:

與原文一樣,我們把資料庫管理介面命名為 Dagoba 。目前,能夠想到的最簡單的測試是確認節點和邊是否已經添加到資料庫中:

assert_item 是一個輔助方法,用於檢查字典是否包含預期的欄位。相信大家都能想到該如何實現,這里就不再列出了,讀者可參考 Github 上的完整源碼。

現在,測試是失敗的。用最簡單的辦法實現資料庫:

需要注意的是,不管添加節點還是查詢,程序都使用了拷貝後的數據副本,而不是直接使用原始數據。為什麼要這樣做?因為字典是可變的,用戶可以在任何時候修改其中的內容,如果資料庫不知道數據已經變化,就很容易發生難以追蹤的一致性問題,最糟糕的情況下會使得數據內容徹底混亂。

拷貝數據可以避免上述問題,代價則是需要佔用更多內存和處理時間。對於資料庫來說,通常查詢次數要遠遠多於修改,所以這個代價是可以接受的。

現在測試應該正常通過了。為了讓它更加完善,我們可以再測試一些邊緣情況,看看資料庫能否正確處理異常數據,比如:

例如,如果用戶嘗試添加重復主鍵,我們預期應拋出 ValueError 異常。因此編寫測試如下:

為了滿足以上測試,代碼需要稍作修改。特別是按照 id 查找主鍵是個常用操作,通過遍歷的方法效率太低了,最好是能夠通過主鍵直接訪問。因此在資料庫中再增加一個字典:

完整代碼請參考 Github 倉庫。

在上個步驟,我們在初始化資料庫時為節點明確指定了主鍵。按照資料庫設計的一般原則,主鍵最好是不具有業務含義的代理主鍵( Surrogate key ),用戶不應該關心它具體的值是什麼,因此讓資料庫去管理主鍵通常是更為合理的。當然,在部分場景下——比如導入外部數據——明確指定主鍵仍然是有用的。

為了同時支持這些要求,我們這樣約定:欄位 _id 表示節點的主鍵,如果用戶指定了該欄位,則使用用戶設置的值(當然,用戶有責任保證它們不會重復);否則,由資料庫自動為它分配一個主鍵。

如果主鍵是資料庫生成的,事先無法預知它的值是什麼,而邊( edge )必須指定它所指向的節點,因此必須在主鍵生成後才能添加。由於這個原因,在動態生成主鍵的情況下,資料庫的初始化會略微復雜一些。還是先寫一個測試:

為支持此功能,我們在資料庫中添加一個內部欄位 _next_id 用於生成主鍵,並讓 add_node 方法返回新生成的主鍵:

接下來,再確認一下邊是否可以正常訪問:

運行測試,一切正常。這個步驟很輕松地完成了,不過兩個測試( DbModelTest 和 PrimaryKeyTest )出現了一些重復代碼,比如 get_item 。我們可以把這些公用代碼提取出來。由於 get_item 內部調用了 TestCase.assertXXX 等方法,看起來應該使用繼承,但從 TestCase 派生基類容易引起一些潛在的問題,所以我轉而使用另一個技巧 Mixin :

實現資料庫模型之後,接下來就要考慮如何查詢它了。

在設計查詢時要考慮幾個問題。對於圖的訪問來說,幾乎總是由某個節點(或符合條件的某一類節點)開始,從與它相鄰的邊跳轉到其他節點,依次類推。所以鏈式調用對查詢來說是一種很自然的風格。舉例來說,要知道 Tom 的孫子養了幾只貓,可以使用類似這樣的查詢:

可以想像,以上每個方法都應該返回符合條件的節點集合。這種實現是很直觀的,不過存在一個潛在的問題:很多時候用戶只需要一小部分結果,如果它總是不計代價地給我們一個巨大的集合,會造成極大的浪費。比如以下查詢:

為了避免不必要的浪費,我們需要另外一種機制,也就是通常所稱的「懶式查詢」或「延遲查詢」。它的基本思想是,當我們調用查詢方法時,它只是把查詢條件記錄下來,而並不立即返回結果,直到明確調用某些方法時才真正去查詢資料庫。

如果讀者比較熟悉流行的 Python ORM,比如 SqlAlchemy 或者 Django ORM 的話,會知道它們幾乎都是懶式查詢的,要調用 list(result) 或者 result[0:10] 這樣的方法才能得到具體的查詢結果。

在 Dagoba 中把觸發查詢的方法定義為 run 。也就是說,以下查詢執行到 run 時才真正去查找數據:

和懶式查詢( Lazy Query )相對應的,直接返回結果的方法一般稱作主動查詢( Eager Query )。主動查詢和懶式查詢的內在查找邏輯基本上是相同的,區別只在於觸發機制不同。由於主動查詢實現起來更加簡單,出錯也更容易排查,因此我們先從主動查詢開始實現。

還是從測試開始。前面測試所用的簡單資料庫數據太少,難以滿足查詢要求,所以這一步先來創建一個更復雜的數據模型:

此關系的復雜之處之一在於反向關聯:如果 A 是 B 的哥哥,那麼 B 就是 A 的弟弟/妹妹,為了查詢到他們彼此之間的關系,正向關聯和反向關聯都需要存在,因此在初始化資料庫時需要定義的邊數量會很多。

當然,父子之間也存在反向關聯的問題,為了讓問題稍微簡化一些,我們目前只需要向下(子孫輩)查找,可以稍微減少一些關聯數量。

因此,我們定義數據模型如下。為了減少重復工作,我們通過 _backward 欄位定義反向關聯,而資料庫內部為了查詢方便,需要把它維護成兩條邊:

然後,測試一個最簡單的查詢,比如查找某人的所有孫輩:

這里 outcome/income 分別表示從某個節點出發、或到達它的節點集合。在原作者的代碼中把上述方法稱為 out/in 。當然這樣看起來更加簡潔,可惜的是 in 在 Python 中是個關鍵字,無法作為函數名。我也考慮過加個下劃線比如 out_.in_ 這種形式,但看起來也有點怪異,權衡之後還是使用了稍微啰嗦一點的名稱。

現在我們可以開始定義查詢介面了。在前面已經說過,我們計劃分別實現兩種查詢,包括主動查詢( Eager Query )以及延遲查詢( Lazy Query )。

它們的內在查詢邏輯是相通的,看起來似乎可以使用繼承。不過遵循 YAGNI 原則,目前先不這樣做,而是只定義兩個新類,在滿足測試的基礎上不斷擴展。以後我們會看到,與繼承相比,把共同的邏輯放到資料庫本身其實是更為合理的。

接下來實現訪問節點的方法。由於 EagerQuery 調用查詢方法會立即返回結果,我們把結果記錄在 _result 內部欄位中。雖然 node 方法只返回單個結果,但考慮到其他查詢方法幾乎都是返回集合,為統一起見,讓它也返回集合,這樣可以避免同時支持集合與單結果的分支處理,讓代碼更加簡潔、不容易出錯。此外,如果查詢對象不存在的話,我們只返回空集合,並不視為一個錯誤。

查詢輸入/輸出節點的方法實現類似這樣:

查找節點的核心邏輯在資料庫本身定義:

以上使用了內部定義的一些輔助查詢方法。用類似的邏輯再定義 income ,它們的實現都很簡單,讀者可以直接參考源碼,此處不再贅述。

在此步驟的最後,我們再實現一個優化。當多次調用查詢方法後,結果可能會返回重復的數據,很多時候這是不必要的。就像關系資料庫通常支持 unique/distinct 一樣,我們也希望 Dagoba 能夠過濾重復的數據。

假設我們要查詢某人所有孩子的祖父,顯然不管有多少孩子,他們的祖父應該是同一個人。因此編寫測試如下:

現在來實現 unique 。我們只要按照主鍵把重復數據去掉即可:

在上個步驟,初始化資料庫指定了雙向關聯,但並未測試它們。因為我們還沒有編寫代碼去支持它們,現在增加一個測試,它應該是失敗的:

運行測試,的確失敗了。我們看看要如何支持它。回想一下,當從邊查找節點時,使用的是以下方法:

這里也有一個潛在的問題:調用 self.edges 意味著遍歷所有邊,當資料庫內容較多時,這是巨大的浪費。為了提高性能,我們可以把與節點相關的邊記錄在節點本身,這樣要查找邊只要看節點本身即可。在初始化時定義出入邊的集合:

在添加邊時,我們要同時把它們對應的關系同時更新到節點,此外還要維護反向關聯。這涉及對字典內容的部分復制,先編寫一個輔助方法:

然後,將添加邊的實現修改如下:

這里的代碼同時添加正向關聯和反向關聯。有的朋友可能會注意到代碼略有重復,是的,但是重復僅出現在該函數內部,本著「三則重構」的原則,暫時不去提取代碼。

實現之後,前面的測試就可以正常通過了。

在這個步驟中,我們來實現延遲查詢( Lazy Query )。

延遲查詢的要求是,當調用查詢方法時並不立即執行,而是推遲到調用特定方法,比如 run 時才執行整個查詢,返回結果。

延遲查詢的實現要比主動查詢復雜一些。為了實現延遲查詢,查詢方法的實現不能直接返回結果,而是記錄要執行的動作以及傳入的參數,到調用 run 時再依次執行前面記錄下來的內容。

如果你去看作者的實現,會發現他是用一個數據結構記錄執行操作和參數,此外還有一部分邏輯用來分派對每種結構要執行的動作。這樣當然是可行的,但數據處理和分派部分的實現會比較復雜,也容易出錯。

本文的實現則選擇了另外一種不同的方法:使用 Python 的內部函數機制,把一連串查詢變換成一組函數,每個函數取上個函數的執行結果作為輸入,最後一個函數的輸出就是整個查詢的結果。由於內部函數同時也是閉包,盡管每個查詢的參數形式各不相同,但是它們都可以被閉包「捕獲」而成為內部變數,所以這些內部函數可以採用統一的形式,無需再針對每種查詢設計額外的數據結構,因而執行過程得到了很大程度的簡化。

首先還是來編寫測試。 LazyQueryTest 和 EagerQueryTest 測試用例幾乎是完全相同的(是的,兩種查詢只在於內部實現機制不同,它們的調用介面幾乎是完全一致的)。

因此我們可以把 EagerQueryTest 的測試原樣不變拷貝到 LazyQueryTest 中。當然拷貝粘貼不是個好注意,對於比較冗長而固定的初始化部分,我們可以把它提取出來作為兩個測試共享的公共函數。讀者可參考代碼中的 step04_lazy_query/tests/test_lazy_query.py 部分。

程序把查詢函數的串列執行稱為管道( pipeline ),用一個變數來記錄它:

然後依次實現各個調用介面。每種介面的實現都是類似的:用內部函數執行真正的查詢邏輯,再把這個函數添加到 pipeline 調用鏈中。比如 node 的實現類似下面:

其他介面的實現也與此類似。最後, run 函數負責執行所有查詢,返回最終結果;

完成上述實現後執行測試,確保我們的實現是正確的。

在前面我們說過,延遲查詢與主動查詢相比,最大的優勢是對於許多查詢可以按需要訪問,不需要每個步驟都返回完整結果,從而提高性能,節約查詢時間。比如說,對於下面的查詢:

以上查詢的意思是從孫輩中找到一個符合條件的節點即可。對該查詢而言,主動查詢會在調用 outcome('son') 時就遍歷所有節點,哪怕最後一步只需要第一個結果。而延遲查詢為了提高效率,應在找到符合條件的結果後立即停止。

目前我們尚未實現 take 方法。老規矩,先添加測試:

主動查詢的 take 實現比較簡單,我們只要從結果中返回前 n 條記錄:

延遲查詢的實現要復雜一些。為了避免不必要的查找,返回結果不應該是完整的列表( list ),而應該是個按需返回的可迭代對象,我們用內置函數 next 來依次返回前 n 個結果:

寫完後運行測試,確保它們是正確的。

從外部介面看,主動查詢和延遲查詢幾乎是完全相同的,所以用單純的數據測試很難確認後者的效率一定比前者高,用訪問時間來測試也並不可靠。為了測試效率,我們引入一個節點訪問次數的概念,如果延遲查詢效率更高的話,那麼它應該比主動查詢訪問節點的次數更少。

為此,編寫如下測試:

我們為 Dagoba 類添加一個成員來記錄總的節點訪問次數,以及兩個輔助方法,分別用於獲取和重置訪問次數:

然後瀏覽代碼,查找修改點。增加計數主要在從邊查找節點的時候,因此修改部分如下:

此外還有 income/outcome 方法,修改都很簡單,這里就不再列出。

實現後再次運行測試。測試通過,表明延遲查詢確實在效率上優於主動查詢。

不像關系資料庫的結構那樣固定,圖的形式可以千變萬化,查詢機制也必須足夠靈活。從原理上講,所有查詢無非是從某個節點出發按照特定方向搜索,因此用 node/income/outcome 這三個方法幾乎可以組合出任意所需的查詢。

但對於復雜查詢,寫出的代碼有時會顯得較為瑣碎和冗長,對於特定領域來說,往往存在更為簡潔的名稱,例如:母親的兄弟可簡稱為舅舅。對於這些場景,如果能夠類似 DSL (領域特定語言)那樣允許用戶根據專業要求自行擴展,從而簡化查詢,方便閱讀,無疑會更為友好。

如果讀者去看原作者的實現,會發現他是用一種特殊語法 addAlias 來定義自己想要的查詢,調用方法時再進行查詢以確定要執行的內容,其介面和內部實現都是相當復雜的。

而我希望有更簡單的方法來實現這一點。所幸 Python 是一種高度動態的語言,允許在運行時向類中增加新的成員,因此做到這一點可能比預想的還要簡單。

為了驗證這一點,編寫測試如下:

無需 Dagoba 的實現做任何改動,測試就可以通過了!其實我們要做的就是動態添加一個自定義的成員函數,按照 Python 對象機制的要求,成員函數的第一個成員應該是名為 self 的參數,但這里已經是在 UnitTest 的內部,為了和測試類本身的 self 相區分,新函數的參數增加了一個下劃線。

此外,函數應返回其所屬的對象,這是為了鏈式調用所要求的。我們看到,動態語言的靈活性使得添加新語法變得非常簡單。

到此,一個初具規模的圖資料庫就形成了。

和原文相比,本文還缺少一些內容,比如如何將資料庫序列化到磁碟。不過相信讀者都看到了,我們的資料庫內部結構基本上是簡單的原生數據結構(列表+字典),因此序列化無論用 pickle 或是 JSON 之類方法都應該是相當簡單的。有興趣的讀者可以自行完成它們。

我們的圖資料庫實現為了提高查詢性能,在節點內部存儲了邊的指針(或者說引用)。這樣做的好處是,無論資料庫有多大,從一個節點到相鄰節點的訪問是常數時間,因此數據訪問的效率非常高。

但一個潛在的問題是,如果資料庫規模非常大,已經無法整個放在內存中,或者出於安全性等原因要實現分布式訪問的話,那麼指針就無法使用了,必須要考慮其他機制來解決這個問題。分布式資料庫無論採用何種數據模型都是一個棘手的問題,在本文中我們沒有涉及。有興趣的讀者也可以考慮 500lines 系列中關於分布式和集群演算法的其他一些文章。

本文的實現和系列中其他資料庫類似,採用 Python 作為實現語言,而原作者使用的是 JavaScript ,這應該和作者的背景有關。我相信對於大多數開發者來說, Python 的對象機制比 JavaScript 基於原型的語法應該是更容易閱讀和理解的。

當然,原作者的版本比本文版本在實現上其實是更為完善的,靈活性也更好。如果想要更為優雅的實現,我們可以考慮使用 Python 元編程,那樣會更接近於作者的實現,但也會讓程序的復雜性大為增加。如果讀者有興趣,不妨對照著去讀讀原作者的版本。

H. 如何有序遍歷mongodb python

對於mongo的操作,先安裝mongodb的python擴展,在你的命令行窗口上輸入:pipinstallpymongo,下面是例子,按需要修改_uri_auth='mongodb://user:password@localhost:27017/'#mongo有要驗證的話請自行替換user和passwordmongo_uri_no_auth='mongodb://localhost:27017/'#mongo沒有賬號密碼驗證的時候用這個database_name='request_db'#你要連接的資料庫名,自行替換你需要的庫名table_name='request_tb'#你要查詢的表名,請自行替換你需要的表名client=MongoClient(mongo_uri_no_auth)#創建了與mongodb的連接db=client[database_name]table=db[table_name]#獲取資料庫中表的游標#你要插入的數據insert_data={"name":"Mike","grade":"two","age":12,"sex":"man"}table..insert_one(insert_data)#插入一條數據#查詢數據name為Mike的記錄record=table.find_one({"name":"Mike"})printrecord

I. python 怎麼遍歷 dict 的keys

看到有人回答,但是不太全,如果遍歷dict有如下機種方式:
d是dict()類型
1:for key in d:
print key,d[key]
2:for key in d.keys():
print key,d[key]
3:for key,value in d.items():
print key,value
4. for key,value in d.iteritems():
print key,value
5. for key in d.iterkeys():
print key,d[key]

J. Python需要學習什麼內容,好學嗎

Python相對來說挺好入門的,不過也不要掉以輕心,學習的時候還是應該認真努力,學習內容整理如下:
Python語言基礎:主要學習Python基礎知識,如Python3、數據類型、字元串、函數、類、文件操作等。
Python語言高級:主要學習Python庫、正則表達式、進程線程、爬蟲、遍歷以及MySQL資料庫。
Pythonweb開發:主要學習HTML、CSS、JavaScript、jQuery等前端知識,掌握python三大後端框架(Django、 Flask以及Tornado)。
Linux基礎:主要學習Linux相關的各種命令,如文件處理命令、壓縮解壓命令、許可權管理以及Linux Shell開發等。
Linux運維自動化開發:主要學習Python開發Linux運維、Linux運維報警工具開發、Linux運維報警安全審計開發、Linux業務質量報表工具開發、Kali安全檢測工具檢測以及Kali 密碼破解實戰。
Python爬蟲:主要學習python爬蟲技術,掌握多線程爬蟲技術,分布式爬蟲技術。
Python數據分析和大數據:主要學習numpy數據處理、pandas數據分析、matplotlib數據可視化、scipy數據統計分析以及python 金融數據分析;Hadoop HDFS、python Hadoop MapRece、python Spark core、python Spark SQL以及python Spark MLlib。
Python機器學習:主要學習KNN演算法、線性回歸、邏輯斯蒂回歸演算法、決策樹演算法、樸素貝葉斯演算法、支持向量機以及聚類k-means演算法。