A. Access資料庫運行的很慢,怎麼能加快
一般來說,access資料庫,如果存的數據量不大的情況下,
同時針對資料庫操作的用戶不多的情況下,速度並不比sql慢!
造成慢的情況!
1:你的程序問題,可以看一下,應該當優化一下,如打開的記錄集,或者是資料庫連接,操作後,及時關閉!
2:針對資料庫進行壓縮一下.操作是工具->壓縮和修復資料庫!
B. 請問電腦裝上資料庫後,運行速度很慢是什麼原因
第一,檢查SQL資料庫的日誌文件是否過大
第二,檢查SQL表中的記錄是否過多
第三,整理一下伺服器硬碟的碎片
第四,檢查ASP程序代碼,如果沒有上述問題,一般問題出在ASP代碼寫的不夠好
第五,可以將資料庫,ASP程序移到差不多的另一台伺服器上測試一下
C. MySQL資料庫伺服器逐漸變慢 該如何分析與解決
MySQL 在崩潰恢復時,會遍歷打開所有 ibd 文件的 header page 驗證數據字典的准確性,如果 MySQL 中包含了大量表,這個校驗過程就會比較耗時。 MySQL 下崩潰恢復確實和表數量有關,表總數越大,崩潰恢復時間越長。另外磁碟 IOPS 也會影響崩潰恢復時間,像這里開發庫的 HDD IOPS 較低,因此面對大量的表空間,校驗速度就非常緩慢。另外一個發現,MySQL 8 下正常啟用時居然也會進行表空間校驗,而故障恢復時則會額外再進行一次表空間校驗,等於校驗了 2 遍。不過 MySQL 8.0 里多了一個特性,即表數量超過 5W 時,會啟用多線程掃描,加快表空間校驗過程。
如何跳過校驗MySQL 5.7 下有方法可以跳過崩潰恢復時的表空間校驗過程嘛?查閱了資料,方法主要有兩種:
1. 配置 innodb_force_recovery可以使 srv_force_recovery != 0 ,那麼 validate = false,即可以跳過表空間校驗。實際測試的時候設置 innodb_force_recovery =1,也就是強制恢復跳過壞頁,就可以跳過校驗,然後重啟就是正常啟動了。通過這種臨時方式可以避免崩潰恢復後非常耗時的表空間校驗過程,快速啟動 MySQL,個人目前暫時未發現有什麼隱患。2. 使用共享表空間替代獨立表空間這樣就不需要打開 N 個 ibd 文件了,只需要打開一個 ibdata 文件即可,大大節省了校驗時間。自從聽了姜老師講過使用共享表空間替代獨立表空間解決 drop 大表時性能抖動的原理後,感覺共享表空間在很多業務環境下,反而更有優勢。
臨時冒出另外一種解決想法,即用 GDB 調試崩潰恢復,通過臨時修改 validate 變數值讓 MySQL 跳過表空間驗證過程,然後讓 MySQL 正常關閉,重新啟動就可以正常啟動了。但是實際測試發現,如果以 debug 模式運行,確實可以臨時修改 validate 變數,跳過表空間驗證過程,但是 debug 模式下代碼運行效率大打折扣,反而耗時更長。而以非 debug 模式運行,則無法修改 validate 變數,想法破滅。
D. 如何解決SQL查詢速度太慢
1. 執行計劃中明明有使用到索引,為什麼執行還是這么慢?
2. 執行計劃中顯示掃描行數為 644,為什麼 slow log 中顯示 100 多萬行?
a. 我們先看執行計劃,選擇的索引 「INDX_BIOM_ELOCK_TASK3(TASK_ID)」。結合 sql 來看,因為有 "ORDER BY TASK_ID DESC" 子句,排序通常很慢,如果使用了文件排序性能會更差,優化器選擇這個索引避免了排序。
那為什麼不選 possible_keys:INDX_BIOM_ELOCK_TASK 呢?原因也很簡單,TASK_DATE 欄位區分度太低了,走這個索引需要掃描的行數很大,而且還要進行額外的排序,優化器綜合判斷代價更大,所以就不選這個索引了。不過如果我們強制選擇這個索引(用 force index 語法),會看到 SQL 執行速度更快少於 10s,那是因為優化器基於代價的原則並不等價於執行速度的快慢;
b. 再看執行計劃中的 type:index,"index" 代表 「全索引掃描」,其實和全表掃描差不多,只是掃描的時候是按照索引次序進行而不是行,主要優點就是避免了排序,但是開銷仍然非常大。
Extra:Using where 也意味著掃描完索引後還需要回表進行篩選。一般來說,得保證 type 至少達到 range 級別,最好能達到 ref。
在第 2 點中提到的「慢日誌記錄Rows_examined: 1161559,看起來是全表掃描」,這里更正為「全索引掃描」,掃描行數確實等於表的行數;
c. 關於執行計劃中:「rows:644」,其實這個只是估算值,並不準確,我們分析慢 SQL 時判斷准確的掃描行數應該以 slow log 中的 Rows_examined 為准。
4. 優化建議:添加組合索引 IDX_REL_DEVID_TASK_ID(REL_DEVID,TASK_ID)
優化過程:
TASK_DATE 欄位存在索引,但是選擇度很低,優化器不會走這個索引,建議後續可以刪除這個索引:
select count(*),count(distinct TASK_DATE) from T_BIOMA_ELOCK_TASK;+------------+---------------------------+| count(*) | count(distinct TASK_DATE) |+------------+---------------------------+| 1161559 | 223 |+------------+---------------------------+
在這個 sql 中 REL_DEVID 欄位從命名上看選擇度較高,通過下面 sql 來檢驗確實如此:
select count(*),count(distinct REL_DEVID) from T_BIOMA_ELOCK_TASK;+----------+---------------------------+| count(*) | count(distinct REL_DEVID) |+----------+---------------------------+| 1161559 | 62235 |+----------+---------------------------+
由於有排序,所以得把 task_id 也加入到新建的索引中,REL_DEVID,task_id 組合選擇度 100%:
select count(*),count(distinct REL_DEVID,task_id) from T_BIOMA_ELOCK_TASK;+----------+-----------------------------------+| count(*) | count(distinct REL_DEVID,task_id) |+----------+-----------------------------------+| 1161559 | 1161559 |+----------+-----------------------------------+
在測試環境添加 REL_DEVID,TASK_ID 組合索引,測試 sql 性能:alter table T_BIOMA_ELOCK_TASK add index idx_REL_DEVID_TASK_ID(REL_DEVID,TASK_ID);
添加索引後執行計劃:
這里還要注意一點「隱式轉換」:REL_DEVID 欄位數據類型為 varchar,需要在 sql 中加引號:AND T.REL_DEVID = 000000025xxx >> AND T.REL_DEVID = '000000025xxx'
執行時間從 10s+ 降到 毫秒級別:
1 row in set (0.00 sec)
結論
一個典型的 order by 查詢的優化,添加更合適的索引可以避免性能問題:執行計劃使用索引並不意味著就能執行快。
E. 資料庫太慢了,怎麼變快啊
表設計不是很好啊,可以考慮把cd表建立日期一個項
然後讀取的時候只要讀取出當日的記錄(24條記錄而已)
至於具體統計交給c#程序這邊統計
你這個瓶頸估計在
1)資料庫的篩選
2)聚合統計(這個分段不要交給sql做了)
F. 如何解決mysql 查詢和更新速度慢
問題
我們有一個 SQL,用於找到沒有主鍵 / 唯一鍵的表,但是在 MySQL 5.7 上運行特別慢,怎麼辦?
實驗
我們搭建一個 MySQL 5.7 的環境,此處省略搭建步驟。
寫個簡單的腳本,製造一批帶主鍵和不帶主鍵的表:
可以看到執行時間變成了 0.67s。
整理
我們診斷的關鍵點如下:
1. 對於 information_schema 中的元數據表,執行計劃不能提供有效信息。
2. 通過查看 MySQL 改寫後的 SQL,我們猜測了優化器發生了誤判。
3. 我們增加了 hint,指導 MySQL 正確進行優化判斷。
但目前我們的實驗僅限於猜測,猜中了萬事大吉,猜不中就無法做出好的診斷。
G. 如果mysql裡面的數據過多,查詢太慢怎麼辦
問題
我們有一個 SQL,用於找到沒有主鍵 / 唯一鍵的表,但是在 MySQL 5.7 上運行特別慢,怎麼辦?
實驗
我們搭建一個 MySQL 5.7 的環境,此處省略搭建步驟。
寫個簡單的腳本,製造一批帶主鍵和不帶主鍵的表:
可以看到執行時間變成了 0.67s。
整理
我們診斷的關鍵點如下:
1. 對於 information_schema 中的元數據表,執行計劃不能提供有效信息。
2. 通過查看 MySQL 改寫後的 SQL,我們猜測了優化器發生了誤判。
3. 我們增加了 hint,指導 MySQL 正確進行優化判斷。
但目前我們的實驗僅限於猜測,猜中了萬事大吉,猜不中就無法做出好的診斷。