A. 資料庫構建流程
構建相山地區地學空間資料庫是在對各類原始數據或圖件資料進行整理、編輯、處理的基礎上,將各類數據或圖形進行按空間位置整合的過程。其工作流程見圖 2.1。
圖2.1 相山地區多源地學空間資料庫構建流程
2.2.1 資料收集
相山地區有 40 多年的鈾礦勘查和研究歷史,積累了大量地質生產或科學研究資料。筆者收集的面上的資料包括原始的離散數據如航空放射性伽瑪能譜數據、航磁數據、山地重力測量數據、ETM 數據,而地面高精度磁測資料僅收集到文字報告和圖件。上述各類數據均可達到製作 1∶50000 圖件的要求。地質圖採用 1995 年核工業 270 研究所等單位共同實施完成的 「相山火山岩型富大鈾礦找礦模式及攻深方法技術研究」項目的 1∶50000附圖; 採用的 1∶50000 地形圖的情況見表 2.1。
2.2.2 圖層劃分
GIS 資料庫既要存儲和管理屬性數據和空間數據,又要存儲和管理空間拓撲關系數據。數據層原理: 大多數 GIS 都是將數據按照邏輯類型分成不同的數據層進行組織,即按空間數據邏輯或專業屬性分為各種邏輯數據類型或專業數據層。相山地區數字化地質圖包括地理要素和地質要素兩大部分,共設置 9 個圖層,每一圖層 (包括點、線或多邊形) 自動創建與之相對應的屬性表。
表2.1 採用的地形圖情況一覽表
注: 坐標系均為 1954 年北京坐標系,1956 年黃海高程系,等高距為 10 m。
(1) 水系圖層 (L6XS01) : 包括雙線河流、單線河流、水庫或水塘。
(2) 交通及居民地圖層 (L6XS02) : 包括公路和主要自然村及名稱。
(3) 地形等高線圖層 (L6XS03) : 包括地形等高線及高程和山峰高程點。
(4) 蓋層圖層 (D6XS04) : 包括第四系 (Q) 和上白堊統南雄組 (K2n) 及其厚度和主要岩性。
(5) 火山岩系圖層 (L6XS05) : 包括下白堊統打鼓頂組 (K1d) 、鵝湖嶺組 (K1e) 及各種淺成- 超淺成侵入體 (次火山岩體) 的分布和主要岩性特徵。
(6) 基底圖層 (L6XS06) : 含下三疊統安源組 (T3a) 、震旦系 (Z) 、燕山早期花崗岩 (γ5) 、加里東期花崗岩 (γ3) 。
(7) 構造圖層 (L6XS07) : 相山地區褶皺構造不發育,構造圖層主要包括實測的和遙感影像解譯的線性斷裂或環形構造。
(8) 礦產圖層 (L6XS08) : 包括大、中、小型鈾礦床和礦點。
(9) 圖框及圖幅基本信息圖層 (L6XS09) : 數字化地質圖的總體描述,內容包括圖框、角點坐標、涉及的 1∶500000 標准圖幅編號、調查單位及出版年代等。
圖層名編碼結構如下:
相山鈾礦田多源地學信息示範應用
2.2.3 圖形輸入
圖形輸入或稱圖形數字化,是將圖形信息數據化,轉變成按一定數據結構及類型組成的數字化圖形。MapGIS 提供智能掃描矢量化和數字化兩種輸入方式。本次採用掃描矢量化輸入,按點、線參數表事先設定預設參數,分別將地形底圖和地質底圖掃描成柵格圖像的 TIF 文件,按照圖層劃分原則,在計算機內分層進行矢量化。線型、花紋、色標、符號等均按 《數字化地質圖圖層及屬性文件格式》行業標准執行。
對於已建立的圖層,按點、線、多邊形分別編輯修改,結合地質圖、地形圖及相關地質報告,採集添加有關屬性數據,用以表示各圖層點、線、多邊形的特徵。拓撲處理前先將多邊形的地質界線校正到標准圖框內進行修改,去掉與當前圖層區域邊界無關的線或點。對於圖幅邊部不封閉的區域,採用圖框線作為多邊形的邊界線,使圖幅內的多邊形均成為封閉的多邊形。拓撲處理後進行圖形數據與屬性數據掛接。
在 MapGIS 實用服務子系統誤差校正模塊中,將數字化地圖校正到統一的大地坐標系統中。圖形資料庫採用高斯-克呂格 (6 度帶) 投影系統,橢球參數: 北京54/克拉索夫斯基。
MapGIS 數據文件交換功能使系統內部的矢量圖層很容易實現 Shape 和 Coverage 等文件格式的轉換。在圖形處理模塊將上述各圖層轉成 Shape 文件格式。
2.2.4 離散數據網格化
在收集的原始資料中,除 1∶50000 地形圖和地質圖之外,航空放射性伽瑪能譜數據(包括原始的和去條帶處理後的數據) 、航磁數據、山地重力測量數據都是離散的二維表格數據。用 GeoExpl 網格化。GeoExpl 數據處理與分析系統提供了多種網格化計算的數學方法,本次選用克立格插值方法,網格間距 15 m。重力和航磁數據網格化後,進行不同方向或不同深度的延拓處理。所有網格化數據均採用了與上述圖形數據相同的地圖投影和坐標系統。
2.2.5 網格化數據影像化
MapGIS 網格化文件格式為 grd,可直接被 Erdas Imagine 讀取,GeoExpl 網格化文件包括重磁處理反演後的網格化文件可轉換成 Surfer.grd 後,被 Erdas Imagine 讀取。然後將上述網格化數據一一轉成 img 影像數據格式。
2.2.6 DEM 生成
地形等高線 (L6XS03) 文件在 MapGIS 空間分析子系統 DEM 分析模塊中,生成 DEM柵格化文件: L6XS03.grd,再轉成 img 格式,文件名改為: XSDEM。
經過上述程序形成的各類矢量或柵格數據,在 ArcView 平台建立 「相山資料庫」工程文件,將上述各 Shape 圖形和 img 影像文件一一添加到該工程文件中。該工程文件即為相山地區矢量、柵格一體化地學空間資料庫。該資料庫,一可以對這類地學空間信息實現由 GIS 支持的圖層管理,二可以視需要不斷進行數字—圖形—圖像的轉換,三可以將多源地學信息進行疊合和融合,以實現多源地學信息的深化應用和分析,為實現相山地區鈾資源數字勘查奠定基礎。
B. 怎樣建立一個簡單資料庫
具體步驟如下:
1、首先打開我們的access程序,打開方法是單擊開始——所有程序。
C. 簡述一個資料庫應用系統的建立過程
資料庫建立過程包括六個主要步驟:
1.需求分析:了解用戶的數據需求、處理需求、安全和完整性需求。
2.概念設計:通過數據抽象,設計系統的概念模型,一般為e-r模型。
3.邏輯結構設計:設計系統的模式和外部模式,特別是關系模型的基本表和視圖。
4.物理結構設計:設計數據的存儲結構和訪問方法,如索引的設計。
5.系統實現:組織數據存儲,編寫應用程序,試運行。
6.運維:系統投入運行,進行長期維護。
(3)資料庫結構怎麼建擴展閱讀:
資料庫設計技巧:
1.原始文檔與實體之間的關系
它可以是一對一、一對多、多對多。一般來說,它們是一對一的關系:也就是說,原始文檔只對應於一個實體,而且只對應於一個實體。在特殊情況下,它們可能是一對多或多對一的,其中一個原始文檔對應多個實體,或者多個原始文檔對應一個實體。
這里的實體可以理解為基本表。在明確了這些對應關系之後,這對於輸入介面的設計是非常有益的。
2.主鍵和外鍵
通常,實體不能同時沒有主鍵和外鍵。在e-r關系圖中,葉中的實體可以定義主鍵,也可以不定義主鍵(因為它沒有後代),但是它必須有外鍵(因為它有父鍵)。
主鍵和外鍵的設計在全局資料庫的設計中起著重要的作用。當全球資料庫的設計完成後,一位美國的資料庫設計專家說:「鑰匙,鑰匙無處不在,只有鑰匙」,這是他的資料庫設計經驗,也是他高度抽象的信息系統核心思想(數據模型)的體現。
因為:主鍵是實體的高度抽象,主鍵和外鍵對,表示實體之間的連接。
3.基本表的屬性
基表不同於中間表和臨時表,因為它有以下四個特點:
原子性。基表中的欄位沒有分解。
原始性。基表中的記錄是原始數據(底層數據)的記錄。
先驗性。所有輸出數據都可以從基表和代碼表中的數據派生出來。
穩定。表的基本結構比較穩定,表中的記錄保存時間較長。
一旦理解了基本表的性質,就可以在設計資料庫時將它們與中間表和臨時表區分開。
D. 資料庫設計的基本步驟是什麼
(1)需求分析階段:需求收集和分析,得到數據字典和數據流圖。
(2)概念結構設計階段:對用戶需求綜合、歸納與抽象,形成概念模型,用E-R圖表示。
(3)邏輯結構設計階段:將概念結構轉換為某個DBMS所支持的數據模型。
(4)資料庫物理設計階段:為邏輯數據模型選取一個最適合應用環境的物理結構。
(5)資料庫實施階段:建立資料庫,編制與調試應用程序,組織數據入庫,程序試運行。
(6)資料庫運行和維護階段:對資料庫系統進行評價、調整與修改。
E. 創建資料庫的兩種方法
創建資料庫有兩種方式:
1.用圖形界面創建資料庫
資料庫(Database)是按照數據結構來組織、存儲和管理數據的建立在計算機存儲設備上的倉庫。
簡單來說是本身可視為電子化的文件櫃——存儲電子文件的處所,用戶可以對文件中的數據進行新增、截取、更新、刪除等操作。
拓展資料:
資料庫(Database)是按照數據結構來組織、存儲和管理數據的倉庫,它產生於距今六十多年前,隨著信息技術和市場的發展,特別是二十世紀九十年代以後,數據管理不再僅僅是存儲和管理數據,而轉變成用戶所需要的各種數據管理的方式。資料庫有很多種類型,從最簡單的存儲有各種數據的表格到能夠進行海量數據存儲的大型資料庫系統都在各個方面得到了廣泛的應用。
在信息化社會,充分有效地管理和利用各類信息資源,是進行科學研究和決策管理的前提條件。資料庫技術是管理信息系統、辦公自動化系統、決策支持系統等各類信息系統的核心部分,是進行科學研究和決策管理的重要技術手段。
F. 資料庫建設
(一)數據准備
1.數據收集
1∶25萬遙感地質填圖數據包含影像數據和矢量數據兩種格式,影像數據主要包括:TM原始影像、SPOT原始影像、SAR原始影像、TM與SPOT融合影像、TM與SAR融合影像、信息增強分類處理後的整幅影像或影像子區;矢量數據主要包括:航磁等值線影像、1∶25萬地形圖、地質圖、航磁解譯地質圖、遙感解譯單元圖、遙感解譯地質圖。現以新疆瓦石峽地區、內蒙古阿龍山地區為例,具體情況如下:
(1)瓦石峽地區
TM衛星影像
SAR衛星影像
航磁等值線(TIF)影像
航磁解譯地質圖
地質圖
遙感解譯影像單元圖
遙感解譯地質圖
(2)阿龍山地區
TM衛星影像
SPOT衛星影像
航磁等值線(TIF)影像
地質圖
航磁解譯地質圖
遙感解譯地質圖
2.數據預處理
1)影像數據處理,主要針對原始影像數據
(1)將TM原始影像、SPOT原始影像、SAR原始影像、航磁等值線(.JPG)數據格式轉換為ERDAS的.IMG格式。
(2)對轉換後的IMG文件進行投影轉換。投影系採用6度分帶的橫軸墨卡托(Transverse Mercator)投影,投影參數為:
Units:Meters
Scale Factor:1.0
Longitude Of Center:123 00 00
Latitude Of Center:0 00 00
False Easting:500 KM
False Northing:0 KM
Xshift:0
Yshift:0
橢球(spheroid)體採用克拉索夫(Krasovsky)橢球,參數為:
SemiMajor:6378245.0000 Meters
SemiMinor:6356863.0188 Meters
坐標系採用大地坐標,度量單位為米,這樣可以在GIS系統中方便的量算特徵的長度和面積。
(3)圖像坐標糾正
參照地形圖選擇同名點,對影像數據進行坐標精校正。同名點的選擇不少於12個。
2)矢量數據處理
工作主要針對地質圖、航磁解譯地質圖、遙感解譯單元圖、遙感解譯地質圖。
(1)數據分層
根據圖面特徵信息內容和制圖要求,每幅矢量圖按特徵類型劃分為點、線、面(區)三個圖層。劃分的依據是遙感地質解譯圖件的信息不完全等同於其他地質調查圖件,它表現的內容主要是:從影像圖中判讀出的地層、岩石影像單元及構造界線,但各種地質特徵的單位、時代、分類、度量、結構、方向等的描述不是十分具體,因此在屬性定義上比較一致,對一個圖件不需要產生基於同一特徵類型的專題圖層,因此按矢量特徵類型劃分較為合理、簡便。
(2)圖件掃描矢量化
將地質、影像單元等圖件掃描成 TIF影像文件,按照分層要求,將每個圖件數字化為點、線、面三個圖層文件。處理的圖件和產生的矢量圖層文件見表3-1至3-7。
表3-1 矢量圖層表
1∶25萬遙感地質填圖方法和技術
c.面特徵:由於影像單元圖的面特徵描述有其特殊之處,有時遵照地層、岩石的分類方法國家標准,但絕大部分是按照影像顏色、紋理等劃分和稱謂,因此進行分類編碼十分困難,有待進一步研究解決。
以上編碼方法是在每種特徵類型組合最大值和預留一定的擴充餘地的基礎上編制的,編碼方案參照國標:GB958—89區域地質圖圖例(1∶5萬)
(6)屬性定義
說明:由於地質代號的組成方式極為復雜,使用了上下角標、希臘字元、拉丁字母等,而這些字元和格式在純文本的屬性欄位中是不能完全或准確表達的,因此在錄入時對地質代號進行了一些簡化。
例如:Pt2xh簡化為Pt2xh
簡化為An1—3
(二)建立資料庫
GIS空間資料庫有兩種存儲形式:一是基於文件索引的傳統空間資料庫管理體系;二是採用商用關系資料庫的解決方案,二者各有千秋。第一種結構是對應用的集成,而數據是鬆散的,雖不利於數據的集中管理,但對不同系統平台之間共享數據提供了很大方便,特別是數據較少的小型應用系統。這種結構的另外一個可取之處是方案簡單,工作量小,不需要資料庫方面的專業知識。第二種結構既是應用的集成,也是數據的集成,並且提供所有的RDBMS的數據和安全管理優勢,但它需要專用的空間數據引擎,對其他軟體使用數據是一個極大的限制,必須進行數據的導入導出和格式轉換,並且要求使用者對RDBMS有一定的操作和管理經驗。
由於本集成系統採用的是ARC/INFO和ERDAS軟體,它們之間只能達到文件方式的數據共享,雖然ARC/INFO 8提供了GeoDataBase這種關系資料庫管理模式,實現真正的空間數據集中管理和RDBMS所有的數據管理能力,但為了滿足兩個軟體之間數據的交互處理,本系統採用文件索引形式的資料庫。在數據完備的基礎上,建庫工作需以下兩個步驟:
(1)首先創建基於項目的不同格式、不同類型的目錄樹工作區,把所有數據文件分類保存在這個工作區中,工作區框架以瓦石峽幅數據為例(圖3-5)。
(2)然後在 ARC/INFO 的 ARCMAP中新建一個 MAP DOCUMENT(以下簡稱為文檔),添加所有數據文件到文檔中。文檔中每個數據文件都被稱為一個 LAYER(以下簡稱為層),每個矢量層可以有它自己的環境,文檔可以保存環境的變化。使用者只需打開這個文檔即可調用項目所有的數據文件,並且恢復到上一次工作時的狀態。
圖3-5 數據分層結構圖
在MAP DOCUMENT這種集成的數據環境下,使用者可以採用ARC/INFO 8的ARCEDITOR、ARCMAP參照影像圖層進行矢量化的解譯工作,對已形成的圖件直接進行圖形和屬性編輯,進行輔助解譯的空間分析,對各種圖件進行疊加比較,使用文字標簽或屬性欄位標注特徵,按照分類符號化特徵,製作專題圖,列印輸出圖件報表等,實現一系列與遙感解譯有關的功能和操作。
由於ARC/INFO提供的地質圖式圖例和符號不能滿足我國的地質成圖要求,因此制圖軟體採用地質行業較為通用的MAPGIS。通過ARCTOOLS工具將最終的解譯成果矢量地質圖轉換為ARC/INFO的標准交換格式E00,提交給MAPGIS形成繪圖文件,出版印刷。具體的實施方案和技術流程見「成果圖件製作方法研究」一節。
G. 如何建立資料庫表結構
你所列舉出的欄位名、類型、長度我不是很清楚。但是你只要按照sql教科書上的關於建立數據表的語法格式套,基本上是沒問題的。建立數據表的sql語句如下:
create
table
dat_group_send_log
(
session_id
varchar2(32)
not
null,
work_flow_id
varchar2(32),
message_id
varchar2(32),
……
insert_time
date
not
null
)
go
將上述語句在查詢分析器中輸入,並運行,應該沒什麼問題。
H. 建立資料庫的原則(怎樣建立一個好的資料庫)
主目錄分類要清楚詳細(也就是要實現的功能)無論是自己,或別人看到你的資料庫名(或表名)都一目瞭然。
****每個表之間的關聯要明確,表之間的訪問,可讀寫(也就是安全,約束)要明確***這點最重要。
在表欄位追加方式和追加內容要明確(每個表欄位之間的關系一定要清楚,不然到時候會給你的表結構帶來許多不便)。
在這之前最好是寫出詳細的需求分析說明,用圖把層次結構畫出來,這要在建的時候才不會混亂。
還有就是當你在寫程序涉及到資料庫的時候,如果你的WEB(FORM)與最初設計的資料庫需求分析不同的話,最好是把需求分析也改為一致。這樣才能夠同步。盡量避免寫程序的時候再回頭設計資料庫。
以上是我自己的看法,可能同行內有更好的解決辦法,多多參考.多多總結..
I. 如何構造資料庫的數據結構
寫個SQL的腳本語句在SQL伺服器上的Query編輯器履行就能夠,要不然用SQL伺服器工具也能夠構造資料庫的
J. 怎麼建資料庫
資料庫有很多種:
常用的有:ACCESS,SQL SERVER, MY SQL,Oracle等等....
看你要建哪種的. 使用T-SQL語句都相差不多的..
例: CREATE DATABASE [DreamTimeNews] ON
(NAME = N'DreamTimeNews_Data', FILENAME = N'C:\Microsoft SQL Server\MSSQL\data\DreamTimeNews_Data.MDF' , SIZE = 2, FILEGROWTH = 10%) LOG ON (NAME = N'DreamTimeNews_Log', FILENAME = N'C:\Microsoft SQL Server\MSSQL\data\DreamTimeNews_Log.LDF' , SIZE = 1, FILEGROWTH = 10%)
COLLATE Chinese_PRC_CI_AS
GO
使用向導創建就是不一樣的了.. ACCESS 這個最簡單的了..